Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Re-introduction of plant in danger of extinction successfully monitored over 10 years for first time ever

19.12.2008
An international team of researchers, including some from the Autonoma University of Barcelona (CREAF-UAB), has carried out the first long-term study into the demographic dynamics of naturally-occurring and artificially-introduced plants of the same species.

By using simultaneous monitoring, the scientists have identified biological and demographic features of the plants that could help to optimise conservation strategies.

The researchers carried out a programme between 1994 and 2004 to intensively monitor the germination, growth and reproduction of natural and introduced plants of the species Centaurea corymbosa, in order to evaluate the success of strategies to introduce the species, and to identify reasons why these fail.

“Very few long-term studies have analysed the success of such strategies, or looked at the critical demographic factors that could help improve them,” Miquel Riba, a researcher at the Centre for Ecological Research and Forestry Applications (CREAF) at the UAB and one of the authors of the study, told SINC.

The comparative analysis of six natural populations and two artificially-introduced ones of the same endemic species, Centaurea corymbosa, allowed the researchers to compare the demographic dynamics of each population type. The study, which has been published recently in the Journal of Applied Ecology, shows the usefulness of comparative demographic studies for establishing the viability of conservation strategies.

According to the researchers, “this monitoring programme has allowed us to observe the fate of almost all the introduced individuals from germination to death over the past ten years, and to analyse their growth rates throughout their entire life cycle”. The investigation has also shown that the plant’s colonisation capacity may reduce its distribution, even at local level.

One of the study’s main conclusions was that it is easier to introduce natural and unique Mediterranean species by means of artificial seed dispersion rather than by restoring degraded habitat. For this reason, the researchers believe a programme to re-introduce many endemic plant species with a limited geographical range due to their poor colonisation capacity could be successful.

Differences between reintroduced and natural plants

Natural and introduced populations displayed differences in the basic demographic parameters studied. Riba says that “individuals from the natural populations had the highest levels of fertility, while the artificially-created populations showed greater ability to survive”.

The high survival rate of the introduced species compensated for their lower fertility, and did not result in any significant difference in the plants’ growth rates. In this sense, the number of seeds produced by each plant was “probably” lower in the introduced populations than the naturally-occurring ones. In addition, the most important plant pollinators were more attracted to the natural ones.

The viability of the population observed by the scientists from the UAB, the National Natural History Museum from Paris, France, and the University of Montpellier, France, provides key knowledge to help ensure the continuance of this species and to increase the number of individuals.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>