Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Re-introduction of plant in danger of extinction successfully monitored over 10 years for first time ever

19.12.2008
An international team of researchers, including some from the Autonoma University of Barcelona (CREAF-UAB), has carried out the first long-term study into the demographic dynamics of naturally-occurring and artificially-introduced plants of the same species.

By using simultaneous monitoring, the scientists have identified biological and demographic features of the plants that could help to optimise conservation strategies.

The researchers carried out a programme between 1994 and 2004 to intensively monitor the germination, growth and reproduction of natural and introduced plants of the species Centaurea corymbosa, in order to evaluate the success of strategies to introduce the species, and to identify reasons why these fail.

“Very few long-term studies have analysed the success of such strategies, or looked at the critical demographic factors that could help improve them,” Miquel Riba, a researcher at the Centre for Ecological Research and Forestry Applications (CREAF) at the UAB and one of the authors of the study, told SINC.

The comparative analysis of six natural populations and two artificially-introduced ones of the same endemic species, Centaurea corymbosa, allowed the researchers to compare the demographic dynamics of each population type. The study, which has been published recently in the Journal of Applied Ecology, shows the usefulness of comparative demographic studies for establishing the viability of conservation strategies.

According to the researchers, “this monitoring programme has allowed us to observe the fate of almost all the introduced individuals from germination to death over the past ten years, and to analyse their growth rates throughout their entire life cycle”. The investigation has also shown that the plant’s colonisation capacity may reduce its distribution, even at local level.

One of the study’s main conclusions was that it is easier to introduce natural and unique Mediterranean species by means of artificial seed dispersion rather than by restoring degraded habitat. For this reason, the researchers believe a programme to re-introduce many endemic plant species with a limited geographical range due to their poor colonisation capacity could be successful.

Differences between reintroduced and natural plants

Natural and introduced populations displayed differences in the basic demographic parameters studied. Riba says that “individuals from the natural populations had the highest levels of fertility, while the artificially-created populations showed greater ability to survive”.

The high survival rate of the introduced species compensated for their lower fertility, and did not result in any significant difference in the plants’ growth rates. In this sense, the number of seeds produced by each plant was “probably” lower in the introduced populations than the naturally-occurring ones. In addition, the most important plant pollinators were more attracted to the natural ones.

The viability of the population observed by the scientists from the UAB, the National Natural History Museum from Paris, France, and the University of Montpellier, France, provides key knowledge to help ensure the continuance of this species and to increase the number of individuals.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>