Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased tropical forest growth could release carbon from the soil

15.08.2011
A new study shows that as climate change enhances tree growth in tropical forests, the resulting increase in litterfall could stimulate soil micro-organisms leading to a release of stored soil carbon.

The research was led by scientists from the Centre for Ecology & Hydrology and the University of Cambridge, UK. The results are published online today (14 August 2011) in the scientific journal Nature Climate Change.

The researchers used results from a six-year experiment in a rainforest at the Smithsonian Tropical Research Institute in Panama, Central America, to study how increases in litterfall - dead plant material such as leaves, bark and twigs which fall to the ground - might affect carbon storage in the soil. Their results show that extra litterfall triggers an effect called 'priming' where fresh carbon from plant litter provides much-needed energy to micro-organisms, which then stimulates the decomposition of carbon stored in the soil.

Lead author Dr Emma Sayer from the UK's Centre for Ecology & Hydrology said, "Most estimates of the carbon sequestration capacity of tropical forests are based on measurements of tree growth. Our study demonstrates that interactions between plants and soil can have a massive impact on carbon cycling. Models of climate change must take these feedbacks into account to predict future atmospheric carbon dioxide levels."

The study concludes that a large proportion of the carbon sequestered by greater tree growth in tropical forests could be lost from the soil. The researchers estimate that a 30% increase in litterfall could release about 0.6 tonnes of carbon per hectare from lowland tropical forest soils each year. This amount of carbon is greater than estimates of the climate-induced increase in forest biomass carbon in Amazonia over recent decades. Given the vast land surface area covered by tropical forests and the large amount of carbon stored in the soil, this could affect the global carbon balance.

Tropical forests play an essential role in regulating the global carbon balance. Human activities have caused carbon dioxide levels to rise but it was thought that trees would respond to this by increasing their growth and taking up larger amounts of carbon. However, enhanced tree growth leads to more dead plant matter, especially leaf litter, returning to the forest floor and it is unclear what effect this has on the carbon cycle.

Dr Sayer added, "Soils are thought to be a long-term store for carbon but we have shown that these stores could be diminished if elevated carbon dioxide levels and nitrogen deposition boost plant growth."

Co-author Dr Edmund Tanner, from the University of Cambridge, said, "This priming effect essentially means that older, relatively stable soil carbon is being replaced by fresh carbon from dead plant matter, which is easily decomposed. We still don't know what consequences this will have for carbon cycling in the long term."

Barnaby Smith | EurekAlert!
Further information:
http://www.ceh.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>