Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impacts of climate change on lakes

22.10.2008
Climate change will have different effects on lakes in warmer and colder regions of the globe.

This is the conclusion reached by Japanese and German researchers following studies of very deep caldera lakes in Japan. Scientists from Hokkaido University, the Hokkaido Institute of Environmental Sciences, Kagoshima University and the Helmholtz Centre for Environmental Research (UFZ) compared current measurements with measurements taken 70 years ago.

This confirmed a rise in temperatures in the deep water layers of lakes in the south of Japan, while the deep water temperatures of lakes in the north remained the same. Rising temperatures can lead to changes in nutrient exchange and turnover in the water. In certain circumstances, winter circulation behaviour can be so severely affected by rising temperatures and other climatic factors that oxygen supplies to the lower depths become insufficient for many organisms, leading to an accumulation of nutrients in the deep water, say the researchers writing in Geophysical Research Letters.

Measurements from 2005 and 2007 in deep Japanese caldera lakes provide information about the distribution of dissolved nutrients in the water. There are two reasons why this chain of lakes makes an excellent research subject for providing general information about circulation under changeable climatic conditions that will be valid for lakes outside the research area. Firstly, the lakes cover a climate gradient that stretches from the south of Japan to the northern island of Hokkaido. Secondly, oxygen and nutrient exchange between the deep water and the surface in the lakes under investigation is controlled almost exclusively by temperature differences.

The researchers found that almost all of the lakes studied displayed a good distribution of the dissolved nutrients, despite their enormous depths of up to 423 metres (Lake Tazawa, Honshu). The lakes can be divided into two main depth-circulation categories based on their climatic conditions.

The researchers expect deep water temperatures of colder lakes (e.g. Lake Shikotsu, Hokkaido) to remain unchanged in warmer winters, provided the temperature rises are not excessive, while deep water temperatures in warmer lakes are likely to rise. This was confirmed by comparisons with single-point measurements from the 1930s. The scientists warn that a very steep rise in winter temperatures over the years results in water temperatures that do not fall anywhere near as low as the temperatures of the previous years and depth circulation can cease altogether (Lake Ikeda, Kyushu). In such circumstances oxygen supplies and nutrient distribution would be interrupted, which would have impacts on organisms.

Water quality in lakes is an important economic factor for tourism, water companies and fishing businesses. Together with colleagues in Australia, Canada and Spain, UFZ scientists are therefore working on numeric lake simulation models which are designed to provide predictions about water quality under altered conditions.

Publications
Boehrer,
B., R. Fukuyama, and K. Chikita (2008), Stratification of very deep, thermally stratified lakes, Geophys. Res. Lett., 35, L16405, doi:10.1029/2008GL034519.
http://www.agu.org/pubs/crossref/2008/2008GL034519.shtml
The research was founded by the Japan Society for the Promotion of Science (JSPS).
Boehrer, B., and M. Schultze (2008), Stratification of lakes, Rev. Geophys., 46, RG2005, doi:10.1029/2006RG000210.

http://www.agu.org/pubs/crossref/2008/2006RG000210.shtml

Further
Information:
Dr Bertram Boehrer
Helmholtz Centre for Environmental Research (UFZ)
Telephone: +49-391-810-9441
http://www.ufz.de/index.php?de=1830
and
Prof. Kazuhisa CHIKITA
Laboratory of Physical Hydrology,
Faculty of Science,
Hokkaido University
Sapporo, JAPAN
Phone: +81-11-706-2764
or
Tilo Arnhold (UFZ press officer)
Telephone: +49-341-235-1269
Mail: presse@ufz.de
Links:
Stratifcation
of Lakes:
http://www.ufz.de/index.php?en=17114
Stirred, not shaken
from: UFZ Magazine 12 (2006), page 37-39 http://www.ufz.de/data/magazin_engl_web28815.pdf
At the Helmholtz Centre for Environmental Research (UFZ) scientists research the causes and consequences of far-reaching environmental changes. They study water resources, biological diversity, the consequences of climate change and adaptation possibilities, environmental and biotechnologies, bio energy, the behaviour of chemicals in the environment and their effect on health, as well as modelling and social science issues. Their guiding research principle is supporting the sustainable use of natural resources and helping to secure these basic requirements of life over the long term under the influence of global change. The UFZ employs 900 people at its sites in Leipzig, Halle and Magdeburg. It is funded by the German government and by the states of Saxony and Saxony-Anhalt.

The Helmholtz Association helps solve major, pressing challenges facing society, science and the economy with top scientific achievements in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space. With 25,700 employees in 15 research centres and an annual budget of around EUR 2.3 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Tilo Arnhold | Helmholtz Centre
Further information:
http://www.ufz.de/index.php?en=17265
http://www.ufz.de

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>