Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University student turns paper mill waste into ‘green’ material for industrial applications

01.08.2011
A method to use paper mill waste to produce ecologically friendly, industrial foams from renewable resources has been developed by a graduate student in agriculture at the Hebrew University of Jerusalem.

Foams are used for numerous day-to-day uses, including in the manufacture of furniture and car interiors. In many composite material applications, they are used as core material in “sandwich” panels to achieve high strength, weight reduction, energy dissipation and insulation.

Conventional foams are produced from polymers such as polyurethane, polystyrene, polyvinyl chloride (PVC) and polyethylene terephthalate (PET). Since all of these current foams rely on fossil oil, they present a clear environmental disadvantage.

Shaul Lapidot, a Ph.D. student of Prof. Oded Shoseyov, along with his laboratory colleagues at the Robert H. Smith Faculty of Agriculture, Food and Environment of the Hebrew University in Rehovot, has formulated a procedure for production of nano-crystalline cellulose (NCC) from paper mill waste. NCC is further processed into composite foams for applications in the composite materials industry as bio-based replacement for synthetic foams.

The process of paper production involves loss of all fibers with dimensions lower than the forming fabric mesh. Consequently around 50% of the total fibers initially produced are washed away as sludge. In Europe alone, 11 million tons of waste are produced annually by this industry, creating an incentive for finding alternative uses and different applications for the wastes.

Lapidot has found that fibers from paper mill sludge are a perfect source for NCC production due to their small dimensions which require relatively low energy and chemical input in order to process them into NCC. He also developed the application of NCC into nano-structured foams. This is further processed into composite foams for applications in the composite materials industry to be used as bio-based replacement for synthetic foams.

NCC foams that Lapidot and his colleagues have recently developed are highly porous and lightweight. Additional strengthening of the foams was enabled by infiltration of furan resin, a hemicellulose-based resin produced from raw crop waste, such as that remaining from sugar cane processing, as well as oat hulls, corn cobs and rice hulls.

The new NCC reinforced foams display technical performance which matches current high-end synthetic foams. The technology was recently licensed from Yissum, the technology transfer company of the Hebrew University, by Melodea Ltd., an Israeli-Swedish start-up company which aims to develop it for industrial scale production.

Lapidot’s development has led to his being awarded one of the Barenholz Prizes that were presented on June 21 at the Hebrew University Board of Governors meeting. The award is named for its donor, Prof. Yehezkel Barenholz of the Hebrew University-Hadassah Medical School.

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>