Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University student turns paper mill waste into ‘green’ material for industrial applications

01.08.2011
A method to use paper mill waste to produce ecologically friendly, industrial foams from renewable resources has been developed by a graduate student in agriculture at the Hebrew University of Jerusalem.

Foams are used for numerous day-to-day uses, including in the manufacture of furniture and car interiors. In many composite material applications, they are used as core material in “sandwich” panels to achieve high strength, weight reduction, energy dissipation and insulation.

Conventional foams are produced from polymers such as polyurethane, polystyrene, polyvinyl chloride (PVC) and polyethylene terephthalate (PET). Since all of these current foams rely on fossil oil, they present a clear environmental disadvantage.

Shaul Lapidot, a Ph.D. student of Prof. Oded Shoseyov, along with his laboratory colleagues at the Robert H. Smith Faculty of Agriculture, Food and Environment of the Hebrew University in Rehovot, has formulated a procedure for production of nano-crystalline cellulose (NCC) from paper mill waste. NCC is further processed into composite foams for applications in the composite materials industry as bio-based replacement for synthetic foams.

The process of paper production involves loss of all fibers with dimensions lower than the forming fabric mesh. Consequently around 50% of the total fibers initially produced are washed away as sludge. In Europe alone, 11 million tons of waste are produced annually by this industry, creating an incentive for finding alternative uses and different applications for the wastes.

Lapidot has found that fibers from paper mill sludge are a perfect source for NCC production due to their small dimensions which require relatively low energy and chemical input in order to process them into NCC. He also developed the application of NCC into nano-structured foams. This is further processed into composite foams for applications in the composite materials industry to be used as bio-based replacement for synthetic foams.

NCC foams that Lapidot and his colleagues have recently developed are highly porous and lightweight. Additional strengthening of the foams was enabled by infiltration of furan resin, a hemicellulose-based resin produced from raw crop waste, such as that remaining from sugar cane processing, as well as oat hulls, corn cobs and rice hulls.

The new NCC reinforced foams display technical performance which matches current high-end synthetic foams. The technology was recently licensed from Yissum, the technology transfer company of the Hebrew University, by Melodea Ltd., an Israeli-Swedish start-up company which aims to develop it for industrial scale production.

Lapidot’s development has led to his being awarded one of the Barenholz Prizes that were presented on June 21 at the Hebrew University Board of Governors meeting. The award is named for its donor, Prof. Yehezkel Barenholz of the Hebrew University-Hadassah Medical School.

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>