Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forensic tools for catching poachers

07.08.2012
The trade in ivory was largely outlawed in 1989, but poaching continues and remains a serious threat to the African elephant. Seizures of large amounts of ivory, sometimes over a ton, continue to occur. Research by Alfred Roca, an assistant professor at the university, could be the basis for the development of new law enforcement tools.

Roca has found a way to determine where the ivory comes from. With funding from the Division of International Conservation of the U.S. Fish and Wildlife Service, he and his collaborators have sampled elephants at 22 locations in 13 African countries to get sequences of their mitochondrial DNA (mtDNA).

mtDNA is the DNA located in mitochondria, structures within cells that convert the chemical energy from food into a form the cells can use. Most DNA is "nuclear," found in the cell nucleus. What makes mtDNA a good marker for tracing the origin of ivory is first, that it is transmitted only by females and second, the fact that female elephants do not migrate between herds.

Other researchers have found that it is possible to get fragments of mtDNA from ivory and that is possible to amplify those fragments. Roca and his collaborators wanted to match these fragments to elephants from a specific location.

To do this, Nicholas Georgiadis, a researcher who was in Kenya and is now at Washington State, used a rifle to shoot a biopsy dart, which would hit the side of the elephant and scrape a small piece (less than a centimeter square) of skin from the elephant and fall off.

"It's like a biting insect," said Roca. "The hardest part was finding the dart after it fell off. Georgiadis never had a problem with an elephant unless it was already predisposed to be hostile to humans."

Georgiadis collected 653 samples that Yasuko Ishida, a researcher in Roca's lab, then sequenced and analyzed. She found eight distinct subclades, or subdivisions, of mtDNA – previous research had detected only two to five -- seven of which had limited geographical distribution.

They identified 108 unique mtDNA sequences, which provided fine-scale information about the origin of the ivory. Among the sequences, 72 percent were found in only one locality and 84 percent of them were country-specific. Although many elephants can have the same sequence, 44 percent of the individual elephants carried a sequence detected only at their sampling locality.

Roca and his team combined these results with five earlier trans-national surveys, which allowed them to examine a shorter region of elephant mtDNA in 81 locations in 22 African countries. Among the 101 unique short sequences detected, 62 percent were present in only one country.

More importantly, the phylogeographic signal (the geographic information provided by mtDNA) was different from the signal provided by nuclear DNA markers used in previous studies. Nuclear markers distinguished between forest and savanna elephants; the mtDNA marker indicated a precise location. The best method would be to combine both types of markers.

Roca hopes that the method developed in this research will be used by conservationists to determine the provenance of confiscated ivory. "It is often hard to trace ivory back to where it came from," he said. "A ship may have left from a certain port in Africa, but that's not necessarily the country where the elephants were poached."

Sequencing the mtDNA can give a good indication of where the ivory is being poached. "Then steps can be taken by that particular country to prevent the poaching from taking place," said Roca.

The research has just been published in Evolutionary Applications.

The research is described in more detail in the following article:

Ishida, Y., N. J. Georgiadis, T. Hondo, and A. L. Roca. "Triangulating the provenance of African elephants using mitochondrial DNA." Evolutionary Applications. Published online http://onlinelibrary.wiley.com/doi/10.1111/j.1752-4571.2012.00286.x/full

Susan Jongeneel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>