Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire may be key to reviving dogwood trees in Eastern forests

09.06.2010
Proper and timely burning of some Eastern U.S. forests could help revitalize flowering dogwood trees, which benefits a wide range of species, a Purdue University report shows.

Dogwood trees act as a calcium pump, pulling the nutrient from deep in the soil and depositing it on the forest floor with their fallen leaves each autumn. It's an important source of nutrition for a variety of species in a forest ecosystem, said Michael Jenkins, assistant professor of forestry and natural resources. Fungi, insects, snails and other organisms that live on the forest floor feed on the calcium-rich leaves, and many birds and mammals consume the protein-rich berries.

"During fall migrations, these berries are an important food source for many songbirds," Jenkins said.

But Discula destructiva, a fungus thought to have been unknowingly brought to the United States from Asia, has caused a serious decline in dogwood populations in recent decades. The fungus kills a tree's foliage and then girdles the tree by creating cankers on the trunk.

"The disease has expanded across much of the flowering dogwood's range in North America," said Jenkins, who co-authored an article published in the journal Forest Ecology and Management with Eric Holzmueller of Southern Illinois University and Shibu Jose of the University of Missouri. "It pretty much decimates dogwood populations. In some cases, we have seen more than 90 percent mortality."

Jenkins and his colleagues studied the effect fire has on revitalizing the dogwood population in the Great Smoky Mountains of Tennessee and North Carolina. He said in forests where there have been two fires over a 20-year period, dogwoods have survived the disease.

Jenkins said the Discula destructiva fungus likes cool, moist areas with little air movement. Undisturbed forests provide that, but occasional burning opens up forests, increases the sunlight that reaches the forest floor and allows greater air movement.

In areas that haven't experienced burns, Jenkins said eastern hemlock trees have moved in and replaced dogwood. The hemlocks create a lower canopy that increases shading and moisture, establishing ideal conditions for the fungus and further reducing dogwoods and potential food sources for wildlife.

"You have these waves of species loss and replacement that alter the stability and function of forest ecosystems," Jenkins said.

Jenkins said prescribed burning on an approximately 10-year rotation might offer a way to maintain dogwood populations in infected forests where eastern hemlock has taken over.

Jenkins and his colleagues next plan to monitor new burn sites to see how dogwood responds and hope to test the direct effects of heat and smoke on the Discula destructiva fungus. The National Park Service Southeast Region Natural Resources Preservation Program, the Great Smoky Mountains Association and the University Florida College of Agriculture and Life Sciences funded the study.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Michael Jenkins, 765-494-3602, jenkinma@purdue.edu

Ag Communications: (765) 494-2722

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Great Basin food source forest ecosystem forest floor natural resource

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>