Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertilization by invasive species threatens nutrient-poor ecosystems

13.03.2012
Biologists at Bielefeld University have developed a new method for quantifying the effect of non-native species on ecosystem functioning

Invasive species are prolific non-native plants or animals that, when introduced to an ecosystem, may imbalance the system and disrupt its natural functioning. Biologists at Bielefeld University in the team of Junior Professor Dr. Christiane Werner in cooperation with the University of Lisbon have developed non-invasive method for quantifying the spatial impact of such exotic species on the ecosystems which they invade.

They can estimate whether native plants in the neighbourhood of invasive species incorporate the nitrogen fixed by the latter. The biologists examined the Sydney Golden Wattle (Acacia longifolia), an Australian shrub that has established itself in Mediterranean climates worldwide. They found that the invasive species threatens native ecosystems not only through its prolific growth but also by fertilizing the surrounding soil with nitrogen – this effect markedly extended beyond the area occupied by the invader. This innovative method (called 15N isoscapes) is being published today (13 March) in the renowned journal 'Ecology Letters'.

Most plants can only take up nitrogen from the soil. The Sydney Golden Wattle (Acacia longifolia) in contrast, is able to assimilate nitrogen from the air with the help of nitrogenfixing bacteria. As a result, this acacia has a large advantage over native non nitrogen fixing species on nitrogen-poor soils such as the dunes on the Portuguese coast at Tróia which the research team from Bielefeld University are investigating. On some of these dunes, a massive encroachments of the non-native acacia has already taken place. It suppresses other plants by using more than its share of the limited nutrients and rainwater. Its leaves and branches also shade out smaller plants in the understory. The ecologists Professor Dr. Christiane Werner and her team - Katherine G. Rascher, Christine Hellmann, and Cristina Máguas - wanted to know whether the invasive impact of this acacia is even broader.

Through the decomposing leaves of these acacias, large amounts of fixed nitrogen originating from the air are passed into the soil. One central question for the researchers was whether the native plants in the neighbourhood of the invader use this nitrogen. The additional nutrients would then potentially enhance the growth rates of neighbouring native species. Although this seems positive at first glance, it has problematic consequences for the species diversity in the dune system, because 'dunes are sensitive ecosystems that depend on slow growth and a sustainable use of resources', Christiane Werner says. If the plants grow more quickly than usual, then they use more water, soils becomes drier, endangering the sensitive equilibrium between the native plant community.

For testing whether nitrogen from the air passes via the acacia to neighbouring plants that only use nitrogen from the soil, the researchers took advantage of a different isotopic forms of nitrogen: The most common stable isotope of nitrogen, 14N, has seven protons and seven neutrons, that is, 14 nuclear particles. The less abundant 'heavy' isotope of nitrogen has an additional neutron and thus a total of 15 nuclear particles, 15N. The concentration of 15N in the air is higher than that in the soil of the Portuguese dunes. Hence, if one species fixes nitrogen from the air and if neighbouring plants take up this additional nitrogen, then the leaves of these neighbouring plants should also reveal a higher concentration of heavy nitrogen isotopes.

The research team has now confirmed that the Portuguese crowberry (Corema album), a native shrub on the Portuguese coast, uses a significant amount of the nitrogen that the Sydney Golden Wattle fixes from the air. 'The effect of the non-native acacia on these shrubs is considerable', says Christiane Werner. Her team took leaf samples in a section of the dunes while mapping the locations of the plants. Using an isotope ratio mass spectrometer to analyse the proportion of 15N in the samples, they compared the results with the plant distribution maps. 'This showed that the acacias influence the nitrogen level and the growth of native plants for a radius of up to eight metres outside their canopy', says Christiane Werner. 'Although the acacia is present in only one-fifth of the area under study, it changes the nitrogen dynamics in almost two-thirds of this area'.

For the biologists, this is a significant finding, because it helps to understand how invasive species such as the Sydney Golden Wattle from Australia manage to proliferate in new ecosystems and suppress native species: in this case, fertilizing their surroundings contributes greatly to the success of this acacia.

The method the ecologists are applying is called 'isoscaping'. It is normally used to pinpoint the landscape in which material originates by determining the isotope ratios, e.g. of mineral or plant residues. The research team in Bielefeld is the first to downscale the procedure to the level of a plant community. Christiane Werner reports that the new method is not only suitable for measuring the impact of non-native plants. In future, it could also be used to study, for example, the effect of factory effluents or agricultural fertilizers on ecosystems.

Original publication:
Community scale 15N isoscapes: tracing the spatial impact of an exotic N2-fixing invader. Katherine G. Rascher, Christine Hellmann, Cristina Máguas, Christiane Werner. 13 March 2012, Ecology Letters, http://dx.doi.org/10.1111/j.1461-0248.2012.01761.x, Impact Factor 15.2
Contact:
Junior Professor Dr. Christiane Werner, Bielefeld University
Faculty of Biology/ Experimental and Systems Ecology
Telephone: +49 521 106-5574
Email: c.werner@uni-bielefeld.de

Jörg Heeren | idw
Further information:
http://www.uni-bielefeld.de/biologie/Oekosystembiologie/doc/oeko13.html
http://dx.doi.org/10.1111/j.1461-0248.2012.01761.x

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>