Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertilization by invasive species threatens nutrient-poor ecosystems

13.03.2012
Biologists at Bielefeld University have developed a new method for quantifying the effect of non-native species on ecosystem functioning

Invasive species are prolific non-native plants or animals that, when introduced to an ecosystem, may imbalance the system and disrupt its natural functioning. Biologists at Bielefeld University in the team of Junior Professor Dr. Christiane Werner in cooperation with the University of Lisbon have developed non-invasive method for quantifying the spatial impact of such exotic species on the ecosystems which they invade.

They can estimate whether native plants in the neighbourhood of invasive species incorporate the nitrogen fixed by the latter. The biologists examined the Sydney Golden Wattle (Acacia longifolia), an Australian shrub that has established itself in Mediterranean climates worldwide. They found that the invasive species threatens native ecosystems not only through its prolific growth but also by fertilizing the surrounding soil with nitrogen – this effect markedly extended beyond the area occupied by the invader. This innovative method (called 15N isoscapes) is being published today (13 March) in the renowned journal 'Ecology Letters'.

Most plants can only take up nitrogen from the soil. The Sydney Golden Wattle (Acacia longifolia) in contrast, is able to assimilate nitrogen from the air with the help of nitrogenfixing bacteria. As a result, this acacia has a large advantage over native non nitrogen fixing species on nitrogen-poor soils such as the dunes on the Portuguese coast at Tróia which the research team from Bielefeld University are investigating. On some of these dunes, a massive encroachments of the non-native acacia has already taken place. It suppresses other plants by using more than its share of the limited nutrients and rainwater. Its leaves and branches also shade out smaller plants in the understory. The ecologists Professor Dr. Christiane Werner and her team - Katherine G. Rascher, Christine Hellmann, and Cristina Máguas - wanted to know whether the invasive impact of this acacia is even broader.

Through the decomposing leaves of these acacias, large amounts of fixed nitrogen originating from the air are passed into the soil. One central question for the researchers was whether the native plants in the neighbourhood of the invader use this nitrogen. The additional nutrients would then potentially enhance the growth rates of neighbouring native species. Although this seems positive at first glance, it has problematic consequences for the species diversity in the dune system, because 'dunes are sensitive ecosystems that depend on slow growth and a sustainable use of resources', Christiane Werner says. If the plants grow more quickly than usual, then they use more water, soils becomes drier, endangering the sensitive equilibrium between the native plant community.

For testing whether nitrogen from the air passes via the acacia to neighbouring plants that only use nitrogen from the soil, the researchers took advantage of a different isotopic forms of nitrogen: The most common stable isotope of nitrogen, 14N, has seven protons and seven neutrons, that is, 14 nuclear particles. The less abundant 'heavy' isotope of nitrogen has an additional neutron and thus a total of 15 nuclear particles, 15N. The concentration of 15N in the air is higher than that in the soil of the Portuguese dunes. Hence, if one species fixes nitrogen from the air and if neighbouring plants take up this additional nitrogen, then the leaves of these neighbouring plants should also reveal a higher concentration of heavy nitrogen isotopes.

The research team has now confirmed that the Portuguese crowberry (Corema album), a native shrub on the Portuguese coast, uses a significant amount of the nitrogen that the Sydney Golden Wattle fixes from the air. 'The effect of the non-native acacia on these shrubs is considerable', says Christiane Werner. Her team took leaf samples in a section of the dunes while mapping the locations of the plants. Using an isotope ratio mass spectrometer to analyse the proportion of 15N in the samples, they compared the results with the plant distribution maps. 'This showed that the acacias influence the nitrogen level and the growth of native plants for a radius of up to eight metres outside their canopy', says Christiane Werner. 'Although the acacia is present in only one-fifth of the area under study, it changes the nitrogen dynamics in almost two-thirds of this area'.

For the biologists, this is a significant finding, because it helps to understand how invasive species such as the Sydney Golden Wattle from Australia manage to proliferate in new ecosystems and suppress native species: in this case, fertilizing their surroundings contributes greatly to the success of this acacia.

The method the ecologists are applying is called 'isoscaping'. It is normally used to pinpoint the landscape in which material originates by determining the isotope ratios, e.g. of mineral or plant residues. The research team in Bielefeld is the first to downscale the procedure to the level of a plant community. Christiane Werner reports that the new method is not only suitable for measuring the impact of non-native plants. In future, it could also be used to study, for example, the effect of factory effluents or agricultural fertilizers on ecosystems.

Original publication:
Community scale 15N isoscapes: tracing the spatial impact of an exotic N2-fixing invader. Katherine G. Rascher, Christine Hellmann, Cristina Máguas, Christiane Werner. 13 March 2012, Ecology Letters, http://dx.doi.org/10.1111/j.1461-0248.2012.01761.x, Impact Factor 15.2
Contact:
Junior Professor Dr. Christiane Werner, Bielefeld University
Faculty of Biology/ Experimental and Systems Ecology
Telephone: +49 521 106-5574
Email: c.werner@uni-bielefeld.de

Jörg Heeren | idw
Further information:
http://www.uni-bielefeld.de/biologie/Oekosystembiologie/doc/oeko13.html
http://dx.doi.org/10.1111/j.1461-0248.2012.01761.x

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>