Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution Flashback: Ecologist Brings Century-old Eggs to Life

20.07.2009
Cornell ecologist brings century-old eggs to life to study evolution. By hatching these eggs, scientists can compare time-suspended hatchlings with their more contemporary counterparts to better understand how a species may have evolved.

Suspending a life in time is a theme that normally finds itself in the pages of science fiction, but now such ideas have become a reality in the annals of science.

Cornell ecologist Nelson Hairston Jr. is a pioneer in a field known loosely as “resurrection ecology,” in which researchers study the eggs of such creatures as zooplankton – tiny, free-floating water animals – that get buried in lake sediments and can remain viable for decades or even centuries. By hatching these eggs, Hairston and others can compare time-suspended hatchlings with their more contemporary counterparts to better understand how a species may have evolved in the meantime.

The researchers take sediment cores from lake floors to extract the eggs; the deeper the egg lies in the core, the older it is. They then place the eggs in optimal hatching conditions, such as those found in spring in a temperate lake, and let nature take its course.

“We can resurrect them and discover what life was like in the past,” said Hairston, who came to Cornell in 1985 and is a professor and chair of Cornell’s Department of Ecology and Evolutionary Biology. “Paleo-ecologists study microfossils, but you can’t understand much physiologically or behaviorally” with that approach, he said.

Hairston first became interested in the possibilities of studying dormant eggs in the late 1970s, when he was an assistant professor of zoology at the University of Rhode Island. There, he noticed that the little red crustaceans – known as copepods – in the pristine lake behind his Rhode Island home disappeared in the summer, only to return as larvae in the fall.

The observation prompted him to study why they disappear, research that revealed the copepods stay active under the ice in the winter, but they die out as their eggs lie dormant on the lake floor through the summer when the lake’s fish are most active. When the fish become less active in the fall, larvae hatch from the eggs, and the copepods continue their life cycle.

This time suspension, where zooplankton pause their life cycles to avoid heavy predation or harsh seasonal and environmental conditions, also increases a species’ local gene pool, with up to a century’s worth of genetic material stored in a lake bed, Hairston said. When insects, nesting fish and boat anchors stir the mud, they can release old eggs that hatch and offer a wider variety of genetic material to the contemporary population.

In 1999 Hairston and colleagues published a paper in Nature that described how 40-year-old resurrected eggs could answer whether tiny crustaceans called Daphnia in central Europe’s Lake Constance had evolved to survive rising levels of toxic cyanobacteria, known as blue-green algae. In the 1970s, phosphorus levels from pollution rose in the lake, increasing the numbers of cyanobacteria. The researchers hatched eggs from the 1960s and found they could not survive the toxic lake conditions, but Daphnia from the 1970s had adapted and survived.

Hairston and colleagues have organized a resurrection ecology symposium in
September 2009, in Herzberg, Switzerland, to bring together researchers in this growing new field.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>