Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Evolution Flashback: Ecologist Brings Century-old Eggs to Life

Cornell ecologist brings century-old eggs to life to study evolution. By hatching these eggs, scientists can compare time-suspended hatchlings with their more contemporary counterparts to better understand how a species may have evolved.

Suspending a life in time is a theme that normally finds itself in the pages of science fiction, but now such ideas have become a reality in the annals of science.

Cornell ecologist Nelson Hairston Jr. is a pioneer in a field known loosely as “resurrection ecology,” in which researchers study the eggs of such creatures as zooplankton – tiny, free-floating water animals – that get buried in lake sediments and can remain viable for decades or even centuries. By hatching these eggs, Hairston and others can compare time-suspended hatchlings with their more contemporary counterparts to better understand how a species may have evolved in the meantime.

The researchers take sediment cores from lake floors to extract the eggs; the deeper the egg lies in the core, the older it is. They then place the eggs in optimal hatching conditions, such as those found in spring in a temperate lake, and let nature take its course.

“We can resurrect them and discover what life was like in the past,” said Hairston, who came to Cornell in 1985 and is a professor and chair of Cornell’s Department of Ecology and Evolutionary Biology. “Paleo-ecologists study microfossils, but you can’t understand much physiologically or behaviorally” with that approach, he said.

Hairston first became interested in the possibilities of studying dormant eggs in the late 1970s, when he was an assistant professor of zoology at the University of Rhode Island. There, he noticed that the little red crustaceans – known as copepods – in the pristine lake behind his Rhode Island home disappeared in the summer, only to return as larvae in the fall.

The observation prompted him to study why they disappear, research that revealed the copepods stay active under the ice in the winter, but they die out as their eggs lie dormant on the lake floor through the summer when the lake’s fish are most active. When the fish become less active in the fall, larvae hatch from the eggs, and the copepods continue their life cycle.

This time suspension, where zooplankton pause their life cycles to avoid heavy predation or harsh seasonal and environmental conditions, also increases a species’ local gene pool, with up to a century’s worth of genetic material stored in a lake bed, Hairston said. When insects, nesting fish and boat anchors stir the mud, they can release old eggs that hatch and offer a wider variety of genetic material to the contemporary population.

In 1999 Hairston and colleagues published a paper in Nature that described how 40-year-old resurrected eggs could answer whether tiny crustaceans called Daphnia in central Europe’s Lake Constance had evolved to survive rising levels of toxic cyanobacteria, known as blue-green algae. In the 1970s, phosphorus levels from pollution rose in the lake, increasing the numbers of cyanobacteria. The researchers hatched eggs from the 1960s and found they could not survive the toxic lake conditions, but Daphnia from the 1970s had adapted and survived.

Hairston and colleagues have organized a resurrection ecology symposium in
September 2009, in Herzberg, Switzerland, to bring together researchers in this growing new field.

Blaine Friedlander | Newswise Science News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>