Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emissions from energy use in the water sector are poorly understood

27.06.2011
Greater understanding is needed of greenhouse gas (GHG) emissions from energy use in the water sector if it is to meet sustainability goals, according to researchers at the University of East Anglia (UEA).

In a study published online today in Nature Climate Change, Prof Declan Conway and Sabrina Rothausen argue that greater focus on the energy requirements of the water sector will be a crucial part of the policy response to the huge challenges it faces in the coming decades.

Transparency in the water industry's energy use is also likely to be important for it to meet carbon-reduction commitments while responding to other measures of sustainability, such as the need for stricter quality standards and increasing demand.

To date, much attention has been given to the need for sustainable water resource management, but far less to the growing energy use and associated emissions from the water sector, for example through processes involved in water treatment and distribution and domestic heating of water.

"Pressures on water management include stricter water-quality standards, increasing demand for water and the need to adapt to climate change, while reducing emissions of GHGs," said Prof Conway, professor of water resources and climate change.

"The processes of abstraction, transport and treatment of fresh water and wastewater all demand energy. Adapting water management to meet increasing demand, regulatory standards and the effects of climate change will in many cases require greater energy use."

He added: "Energy use in the water sector is growing, yet its importance is under-recognized, and gaps remain in our knowledge. In this study we define the need to integrate energy use further into water resource management and identify opportunities for the water sector to understand and describe more effectively its role in GHG emissions, through regulatory and behavioural responses, to meet future challenges."

Some recent studies have highlighted the importance of GHG emissions from energy use in the water sector. They show that water-related energy use in the US accounts for nearly 5% of total GHG emissions, and the proportion is even higher in the UK, although there it is mostly associated with end uses of water, such as heating. In countries with very high freshwater withdrawals, most of the water is used for irrigation and the energy used in its extraction and transport is often considerable. Estimates for India suggest that emissions from lifting water for irrigation could be as much as 6% of total national emissions.

Climate change represents a huge challenge to the sustainable management of water resources. In recent decades, developments in industrial, agricultural and domestic water use, and in water-quality regulation, have greatly intensified the treatment and transport of water. Moreover, rising demand for food and biofuels, and their international trade, threaten to drive expansion of irrigated cropland and cropping intensity and hence greater use of water for agriculture. These activities generally require high energy consumption and have contributed to increases in energy use in the water sector in many parts of the world.

The 'perfect storm' scenario of sustaining increases in food production given climate change impacts and the need to reduce GHG emissions, together with increasing competition for water, provides a strong rationale for better integration of water and energy use.

There is also a need to achieve better connections between mitigation and adaptation. Consideration of alternative water supply systems, treatment technologies or water allocation may have a tendency to overlook the carbon cost; some measures regarded as sustainable water management, such as desalination, are very energy intensive. This is particularly the case in the absence of regulatory pressure, as is currently the case in most countries.

In Greenhouse-gas emissions from energy use in the water sector, Prof Conway and Ms Rothausen, of the School of International Development, quantify energy use in the water sector and detail the extent of current knowledge on emissions from the water sector and agricultural water use. Their review shows that energy use and GHG emissions in the sector are under-recognized, in part because of differences in the scope of water-sector boundaries, data availability, methodological approaches and whether results are expressed as energy use or GHG emissions.

Ms Rothausen explained: "Although end use often has the highest energy use of all water-sector elements, it has not traditionally been seen as a direct part of the water sector and is often unaccounted for in water management and policy.

"What evidence there is shows that energy use in the water sector is considerable and growing. This growth is likely to continue, sometimes as an unintended policy outcome, with greater pressure to use and maintain quality of water resources. Despite some recent progress, we need to better understand and profile the role of the water sector as a GHG emitter. A co-ordinated view of the water sector will promote more comprehensive assessments of energy use, while standardized methodologies will enable comparisons between assessments of different technologies and processes, and between regions or countries."

Greenhouse-gas emissions from energy use in the water sector is published online on June 26 in Nature Climate Change (DOI: 10.1038/nclimate1147).

Press office | EurekAlert!
Further information:
http://www.uea.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>