Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eavesdropping plants prepare to be attacked

08.08.2013
In a world full of hungry predators, prey animals must be constantly vigilant to avoid getting eaten. But plants face a particular challenge when it comes to defending themselves.

"One of the things that makes plants so ecologically interesting is that they can't run away," says John Orrock, a zoology professor at the University of Wisconsin–Madison. "You can't run, you can't necessarily hide, so what can you do? Some plants make themselves less tasty."

Some do this either by boosting their production of toxic or unpleasant-tasting chemicals (think cyanide, sulfurous compounds, or acids) or through building physical defenses such as thorns or tougher leaves.

But, he adds, "Defense is thought to come at a cost. If you're investing in chemical defenses, that's energy that you could be putting into growth or reproduction instead."

To balance those costs with survival, it may behoove a plant to be able to assess when danger is nigh and defenses are truly necessary. Previous research has shown that plants can induce defenses against herbivores in response to airborne signals from wounded neighbors.

But cues from damaged neighbors may not always be useful, especially for the first plant to be attacked, Orrock says. Instead he asked whether plants — here, black mustard, a common roadside weed — can use other types of cues to anticipate a threat.

In a presentation Aug. 6 at the 2013 Ecological Society of America Annual Meeting in Minneapolis, he and co-author Simon Gilroy, a UW–Madison botany professor, reported that the plants can eavesdrop on herbivore cues to mount a defensive response even before any plant is attacked.

Slugs and snails are generalist herbivores that love to munch on mustard plants and can't help but leave evidence of their presence — a trail of slime, or mucus. Where there's slime, there's a snail. So Orrock treated black mustard seeds or new seedlings with snail mucus, then tested how appealing the resulting plants were to hungry snails.

The result? Getting slimed made the plants become less palatable. "That shows that plants are paying attention to generalist herbivore cues and that they turn on their defenses before they even get attacked," says Orrock.

What's more, they used the information in a time-sensitive way. Plants exposed only as seeds were eaten more — evidence of lower defenses — than those exposed as seedlings.

"The more recently they receive the information about impending attack, the more likely they are to use the information to defend themselves," he says. "Not only do they eavesdrop, they eavesdrop in a sophisticated way."

With Gilroy, Orrock is now exploring the genetics — and possibly evolution — of induced defenses. "If selection is strong enough from generalist snail herbivores to drive the evolution of eavesdropping by plants, then it might be far more common than we think," he says.

-- Jill Sakai, 608-262-9772, jasakai@wisc.edu

Sidebar:

How did they do that? Collecting snail slime

"It's not easy to get mucus out of a snail," says John Orrock. For one thing, "they make three different kinds."

The UW–Madison zoology professor used snail slime to show that black mustard plants can use cues of predator proximity to trigger defense mechanisms against the hungry snails.

But his first challenge was collecting enough slime to treat the plants. Initially he turned the snails upside down and tapped them, but what bubbled up was just defensive mucus, not the locomotion mucus (or "slime trail") he sought.

Ultimately he devised a low-tech but effective solution: let the snails crawl around overnight on a piece of filter paper lining the bottom of a small plastic deli container, then wash the filter paper and use the resulting slime water to treat the seeds and plants.

"One thing that's so cool about ecology is that you can do really enlightening experiments very simply. Clearly, if you're interested in the molecular or chemical aspects of the question, this isn't going to cut it. But if you want to know if a plant gets paranoid with slime? This," Orrock says, shaking the container, "plus snails equals results."

John Orrock | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Cyanide Eavesdropping acids mustard plant sulfurous compounds

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>