Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dry Leaves Make for Juicy Science

20.11.2012
A research team consisting of a University of Arizona graduate student, about 40 middle school students and a UA research lab has undertaken the first systematic study looking at how much plant leaves shrink when they dry out. The results are published in the November issue of the American Journal of Botany, one of the foremost publication venues in the botanical sciences.
“Our simple observation that leaves shrink when they dry out has very important consequences for our understanding how ecosystems work,” said Benjamin Blonder, a graduate student in the UA’s department of ecology and evolutionary biology who led the research. “Many studies in ecology, especially reconstructions of past climate, depend on knowing how big leaves are. By relying on measurements of dried leaves, a very large number of climate and ecology studies may have obtained biased conclusions.”

For example, when scientists reconstruct climate and precipitation in the past to figure out whether an area was subjected to droughts or whether it was wet, they often turn to fossilized leaves, Blonder explained.

According to Blonder, the specific area of a leaf in relation to its mass also is a very useful parameter in predicting how much carbon a plant can capture from the atmosphere.

If leaves undergo dramatic changes in size during fossilization, the conclusions are likely to be off. The same effect would be expected when researchers use dried leaves from museum collections for their calculations.

“You measure the area of a leaf, enter that into an equation, and it will calculate the estimated precipitation for that site. If you have the wrong estimate of leaf area, you’ll have the wrong estimate of precipitation,” he said.

“People already knew leaves shrink a lot when they’re dried out, but we didn’t know by how much,” Blonder said. “Also, I wanted to know if the shrinkage could be reversed.”

So he set out to collect and measure leaves from various areas, including Costa Rica, Hawaii and the Rocky Mountains in Colorado.

At the time, Blonder spent two days each week at Miles Exploratory Learning Center in the Tucson Unified School District, supported by BioME, a UA graduate training grant funded by the National Science Foundation’s GK-12 Program (see sidebar, "Extra Info").

“I realized I had more than 100 potential scientists right there in front of me,” he said.

“Ben and I had been discussing the possibility of some kind of hands-on research project,” said Rebecca Lipson, the middle school science teacher at Miles Exploratory Learning Center, who was partnered with Blonder as a BioME fellow to teach her students ranging from 6th through 8th grade.

Blonder’s doctoral advisor Brian Enquist, a professor in the UA department of ecology and evolutionary biology, said he was enthusiastic about the chance to for his lab to help out in Lipson’s classroom.

“Ben’s enthusiasm for sharing the love of science with young students was infectious,” Enquist said. “I am thrilled that we had this opportunity to share and teach science that we do at the UA with such bright and engaged kids.”

“I wanted to bring in someone who is a great role model for my students,” Lipson said. “Many of them tend to think of a scientist as a dull professor in a white lab coat who never leaves the lab, and I like to shatter that notion. Having a young, passionate grad student in my class helps my students to get an idea of the vast array of what science is really like.”

With Blonder as their “principal investigator,” or “PI” as they called him, all 105 students in Lipson’s four science classes embarked on a quest to find out exactly how much leaves shrink when they dry out, what parameters determine the amount of shrinkage depending on the species, and whether leaves return to their original size once they are rehydrated.

Each class focused on a specific aspect of the research. Blonder and his student collaborators examined leaves from four plant species native to the area and tasked them with determining the effect of a particular treatment.

“My students studied what happened to the leaves when they soaked them in water, immersed them in mud, let them dry out or rehydrated them afterward.”

When leaves dry out, they shrink about 20 percent on average, the team discovered. In the most extreme case, the leaves of the mountain meadow-rue (Thalictrum fendleri), an herb from the Rocky Mountains, shriveled down to one-fifth of their original size.

“Through the experiments in the classroom, we found that a leaf comes back to its original size when we soak it in water,” Blonder said, “which provides an easy and useful strategy for scientists doing studies that depend on accurate measurements of leaf area.”

Delving deeper into the project, the students tried to answer the question of what determines how much a leaf shrinks.

“At the beginning, we thought there would be a very simple explanation,” Blonder said. “But it turned out that we ended up with many variables that determine the amount of shrinkage in a leaf of a given species. We used data from hundreds of species, yet there is no simple answer.”

The group did find that the amount of structural investment a plant puts into its leaves is a crucial factor determining how much a leaf will shrink when it dries out.

“The more mass and tissue the plant invests into its leaves in terms of components that provide mechanical strength, the less shrinkage will occur,” Blonder said.

Almost half of the participating students completed the necessary prerequisites and assignments to qualify as co-authors on the scientific paper that resulted from the study.

“Our school has nearly 40 percent of students that qualify for special needs education services,” Lipson explained. “Our philosophy is to target those children who struggle in reading, writing or math and give them opportunities to really engage in their learning and understand concepts a deeper level.”

The BioME program has been spearheaded by Judith Bronstein, a University Distinguished Professor in the UA’s department of ecology and evolutionary biology, who served as its principal investigator.

"Projects like this one have been hugely beneficial to the Tucson community,” Bronstein said, adding that over the course of five years, 52 BioME graduate fellows have engaged tens of thousands of school children in actual research projects.

“The goal has been to expose them to real science, in the sense that you don’t know what the answer is. This makes science much more compelling,” Bronstein said. “I am not aware of another such program anywhere in the country in which a grad fellow directly involved school children in writing a scientific paper.”

Financial cutbacks have led the National Science Foundation to eliminate the program that funded BioME, as well as two other highly successful training programs that place graduate students in Tucson classrooms.

Blonder wants to continue teaching at Miles Exploratory Center. Enquist has been actively applying for alternative funding sources to keep the partnership alive.

“This was such a fun and rewarding experience,” Enquist said. “It is important for developing science literacy in our schools that we keep such exchanges going.”

“We are very lucky that Dr. Enquist wanted us to continue our partnership in education,” Lipson said. “Now that the formal program no longer exists, it will be up to individual students, their advisors and their departments to keep this alive.”

“I think we have shown you can work in a school and get serious science published,” Lipson said.

Blonder added: “This is a nice example of where science and teaching really do come together to produce a study with real scientific value.”

About the BioME program:

BioME (Biodiversity from Molecules to Ecosystems) is an NSF GK-12 (Graduate Fellows in K-12 Education) program that creates and supports one-year partnerships between UA life sciences graduate students and K-12 educators. BioME teachers and fellows use cutting-edge approaches, including molecular techniques, computational biology and experience with live organisms to teach fundamental concepts of biodiversity and evolution; all activities focus on giving K-12 students hands-on experience with the process of scientific inquiry. Each graduate fellow/teacher team works to help students identify research questions, design and implement short-term research projects, analyze data and present their research.

LINKS:

Publication in American Journal of Botany: http://www.amjbot.org/content/early/2012/11/06/ajb.1200062.full.pdf+html

UA Department of Ecology and Evolutionary Biology: http://eebweb.arizona.edu

Benjamin Blonder's website: http://www.sourcecod.com

Benjamin Blonder's "Natural Curiosities" blog: http://bblonder.wordpress.com

NSF BioME program: http://biome.bio5.org

CONTACTS:

Note: Benjamin Blonder is currently traveling in Europe but can be reached by email:

bblonder@gmail.com

Brian Enquist
Department of Ecology and Evolutionary Biology
The University of Arizona
benquist@email.arizona.edu
520-626-3329
Judith Bronstein
Department of Ecology and Evolutionary Biology
The University of Arizona
judieb@email.arizona.edu
520-621-3534
Daniel Stolte
University Communications
The University of Arizona
stolte@email.arizona.edu
520-626-4402

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>