Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drinking water in Gaza Strip contaminated with high levels of nitrate

15.08.2008
Manure and wastewater are polluting the water and endangering infant health

Palestinian and German scientists have recommended to the authorities in the Gaza Strip that they take immediate measures to combat excessive nitrate levels in the drinking water.

90 per cent of their water samples were found to contain nitrate concentrations that were between two and eight times higher than the limit recommended by the World Health Organization (WHO), say the researchers from the University of Heidelberg and the Helmholtz Centre for Environmental Research (UFZ) writing in the specialist journal Science of the Total Environment. Over the long term they recommend that the best protection would be provided by quality management for groundwater resources.

Groundwater is the only source of drinking water for the majority of people living in the Gaza Strip. In babies younger than six months, nitrate can lead to methaemoglobinaemia, to diarrhoea and to acidosis. The WHO therefore recommends keeping nitrate levels to 50 milligrams per litre or less. According to unpublished research, half of the 640 infants tested were already showing signs of methaemoglobinaemia.

The new Palestinian-German study confirms earlier water analyses and is the first study to pinpoint a source of the contamination. With the help of isotope analyses, the researchers were able to demonstrate that the nitrate pollution can be traced back to manure used in farming and to wastewater.

With over 2600 people per square kilometre, the Gaza Strip is one of the most densely populated areas on earth. Because of their isolation, the inhabitants of this area between the Mediterranean, Egypt and Israel are reliant on being self-sufficient. The fields are mostly fertilized with chicken and cow dung. Artificial fertilizers account for only around a quarter of the fertilizer used. Because of the area’s geology and the semi-arid climate, it is fairly easy for impurities to seep down from the surface into the aquifier system.

Organic fertilizers and wastewater are the main causes of the nitrate contamination in the groundwater, followed by sewage sludge and artificial fertilizers. This was revealed by the isotope ratios of nitrogen (15N/14N) and oxygen (18O/16O) in the nitrate. Isotopes are variations of the same chemical element that have a different number of neutrons in their nuclei. 18O and 15N are stable, i.e. non-radioactive, isotopes that are heavier than "normal" oxygen (16O) or nitrogen (14N) and can therefore be measured using a mass spectrometer.

The lower 15N nitrogen isotope values in the sewage sludge indicate that the nitrate in the Gaza groundwater comes primarily from manure used as fertilizer," explains Dr Karsten Osenbrück of the UFZ. Between 2001 and 2007 the scientists took water samples from 115 municipal wells and 50 private wells on seven occasions. They measured nitrate concentrations of between 31 and 452 milligrams per litre. Only 10 of the 115 municipal wells examined were found to have a nitrate level below the WHO guideline value. The situation with the private wells was equally serious: apart from three, all the wells were found to have nitrate levels that were between five and seven times higher than the WHO recommendations.

Tilo Arnhold | alfa
Further information:
http://www.ufz.de
http://www.ufz.de/index.php?en=17112

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>