Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drinking water in Gaza Strip contaminated with high levels of nitrate

Manure and wastewater are polluting the water and endangering infant health

Palestinian and German scientists have recommended to the authorities in the Gaza Strip that they take immediate measures to combat excessive nitrate levels in the drinking water.

90 per cent of their water samples were found to contain nitrate concentrations that were between two and eight times higher than the limit recommended by the World Health Organization (WHO), say the researchers from the University of Heidelberg and the Helmholtz Centre for Environmental Research (UFZ) writing in the specialist journal Science of the Total Environment. Over the long term they recommend that the best protection would be provided by quality management for groundwater resources.

Groundwater is the only source of drinking water for the majority of people living in the Gaza Strip. In babies younger than six months, nitrate can lead to methaemoglobinaemia, to diarrhoea and to acidosis. The WHO therefore recommends keeping nitrate levels to 50 milligrams per litre or less. According to unpublished research, half of the 640 infants tested were already showing signs of methaemoglobinaemia.

The new Palestinian-German study confirms earlier water analyses and is the first study to pinpoint a source of the contamination. With the help of isotope analyses, the researchers were able to demonstrate that the nitrate pollution can be traced back to manure used in farming and to wastewater.

With over 2600 people per square kilometre, the Gaza Strip is one of the most densely populated areas on earth. Because of their isolation, the inhabitants of this area between the Mediterranean, Egypt and Israel are reliant on being self-sufficient. The fields are mostly fertilized with chicken and cow dung. Artificial fertilizers account for only around a quarter of the fertilizer used. Because of the area’s geology and the semi-arid climate, it is fairly easy for impurities to seep down from the surface into the aquifier system.

Organic fertilizers and wastewater are the main causes of the nitrate contamination in the groundwater, followed by sewage sludge and artificial fertilizers. This was revealed by the isotope ratios of nitrogen (15N/14N) and oxygen (18O/16O) in the nitrate. Isotopes are variations of the same chemical element that have a different number of neutrons in their nuclei. 18O and 15N are stable, i.e. non-radioactive, isotopes that are heavier than "normal" oxygen (16O) or nitrogen (14N) and can therefore be measured using a mass spectrometer.

The lower 15N nitrogen isotope values in the sewage sludge indicate that the nitrate in the Gaza groundwater comes primarily from manure used as fertilizer," explains Dr Karsten Osenbrück of the UFZ. Between 2001 and 2007 the scientists took water samples from 115 municipal wells and 50 private wells on seven occasions. They measured nitrate concentrations of between 31 and 452 milligrams per litre. Only 10 of the 115 municipal wells examined were found to have a nitrate level below the WHO guideline value. The situation with the private wells was equally serious: apart from three, all the wells were found to have nitrate levels that were between five and seven times higher than the WHO recommendations.

Tilo Arnhold | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>