Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coralline algae in the Mediterranean lost their tropical element between 5 and 7 million years ago

08.07.2009
An international team of researchers has studied the coralline algae fossils that lived on the last coral reefs of the Mediterranean Sea between 7.24 and 5.3 million years ago. Mediterranean algae and coral reefs began to resemble present day reefs following the isolation of the Mediterranean from the Indian Ocean and global cooling 15 and 20 million years ago respectively.

The research team from the University of Granada (UGR) and the University of Modena and Reggio Emilia (Italia) show coralline algae distribution patterns in the west and centre of the Mediterranean Sea (in Salento, Italy and Almería, Spain) by way of a fossil register of 21 species collected in the two areas.

"Coralline algae are calcareous algae that are very common nowadays, although unknown to the general public, including naturalists, and quite often in fossil form, particularly in relatively modern rocks", Juan C. Braga, the chief author and a researcher at the Stratigraphy and Paleontology Department of the UGR explained to SINC.

The study, which was published recently in Palaeogeography Palaeoclimatology Palaeoecology, describes and interprets the disappearance of the last Messinian coral reefs (between 7.24 and 5.3 million years ago) in the Mediterranean Sea. "In subsequent, more recent eras, this sea has not had the right oceanographic conditions (above all a high enough temperature) to house coral reefs," Braga added.

When Tropical Coral Reefs Became Atlantic

During the period studied by the scientists through the coralline algae fossils found in the Mediterranean, the last few reefs boasted very little coralline diversity. "This is the result of the long history of global cooling over the last 20 million years and the isolation (separation) of the Mediterranean from the Indian Ocean, some 15 million years ago," the research says.

According to the results of the research, the relative abundance of coralline algae in reefs and slope deposits is 1-5% and 18% lower respectively in the Sorbas basin (Almería) than in Salento (Italy). Furthermore, the main components of the coralline algae assemblages found in shallow water are extant species that are very common in the Mediterranean.

Other species, such as Spongites fruticulosus and Phymatolithon calcareum, have lived in the western Mediterranean for more than 25 million years. However, the typical components of present-day coral reefs, such as Hydrolithon species with thick thalli, which were no longer present in the western region of the Mediterranean 7 million years ago.

"Just like reef corallines, algae flora reflects the cooling of the Mediterranean and its isolation from the Indian Ocean, and only a few tropical biotas existed in the Messinian era. Moreover, most of them already had Atlantic affinities and resembled the algae that still inhabits our coasts today", Braga states.

The Mediterranean-Atlantic characteristics of Messinian reef corallines therefore reflect the decrease in tropical biotas that occurred during the Miocene (around 20 million years ago). According to the research team, the widespread decline of this type of algae was due to global cooling and the isolation of the Mediterranean during the middle Miocene.

References:

Braga, Juan C.; Vescogni, Alessandro; Bosellini, Francesca R.; Aguirre, Julio. "Coralline algae (Corallinales, Rhodophyta) in western and central Mediterranean Messinian reefs" Palaeogeography Palaeoclimatology Palaeoecology 275(1-4): 113-128, 1 de mayo de 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>