Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coralline algae in the Mediterranean lost their tropical element between 5 and 7 million years ago

08.07.2009
An international team of researchers has studied the coralline algae fossils that lived on the last coral reefs of the Mediterranean Sea between 7.24 and 5.3 million years ago. Mediterranean algae and coral reefs began to resemble present day reefs following the isolation of the Mediterranean from the Indian Ocean and global cooling 15 and 20 million years ago respectively.

The research team from the University of Granada (UGR) and the University of Modena and Reggio Emilia (Italia) show coralline algae distribution patterns in the west and centre of the Mediterranean Sea (in Salento, Italy and Almería, Spain) by way of a fossil register of 21 species collected in the two areas.

"Coralline algae are calcareous algae that are very common nowadays, although unknown to the general public, including naturalists, and quite often in fossil form, particularly in relatively modern rocks", Juan C. Braga, the chief author and a researcher at the Stratigraphy and Paleontology Department of the UGR explained to SINC.

The study, which was published recently in Palaeogeography Palaeoclimatology Palaeoecology, describes and interprets the disappearance of the last Messinian coral reefs (between 7.24 and 5.3 million years ago) in the Mediterranean Sea. "In subsequent, more recent eras, this sea has not had the right oceanographic conditions (above all a high enough temperature) to house coral reefs," Braga added.

When Tropical Coral Reefs Became Atlantic

During the period studied by the scientists through the coralline algae fossils found in the Mediterranean, the last few reefs boasted very little coralline diversity. "This is the result of the long history of global cooling over the last 20 million years and the isolation (separation) of the Mediterranean from the Indian Ocean, some 15 million years ago," the research says.

According to the results of the research, the relative abundance of coralline algae in reefs and slope deposits is 1-5% and 18% lower respectively in the Sorbas basin (Almería) than in Salento (Italy). Furthermore, the main components of the coralline algae assemblages found in shallow water are extant species that are very common in the Mediterranean.

Other species, such as Spongites fruticulosus and Phymatolithon calcareum, have lived in the western Mediterranean for more than 25 million years. However, the typical components of present-day coral reefs, such as Hydrolithon species with thick thalli, which were no longer present in the western region of the Mediterranean 7 million years ago.

"Just like reef corallines, algae flora reflects the cooling of the Mediterranean and its isolation from the Indian Ocean, and only a few tropical biotas existed in the Messinian era. Moreover, most of them already had Atlantic affinities and resembled the algae that still inhabits our coasts today", Braga states.

The Mediterranean-Atlantic characteristics of Messinian reef corallines therefore reflect the decrease in tropical biotas that occurred during the Miocene (around 20 million years ago). According to the research team, the widespread decline of this type of algae was due to global cooling and the isolation of the Mediterranean during the middle Miocene.

References:

Braga, Juan C.; Vescogni, Alessandro; Bosellini, Francesca R.; Aguirre, Julio. "Coralline algae (Corallinales, Rhodophyta) in western and central Mediterranean Messinian reefs" Palaeogeography Palaeoclimatology Palaeoecology 275(1-4): 113-128, 1 de mayo de 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>