Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral Records Suggest El Nino Activity Rises Above Background

04.01.2013
By examining a set of fossil corals that are as much as 7,000 years old, scientists have dramatically expanded the amount of information available on the El Nino-Southern Oscillation, a Pacific Ocean climate cycle that affects climate worldwide. The new information will help assess the accuracy of climate model projections for 21st century climate change in the tropical Pacific.

The new coral data show that 20th century El Nino Southern Oscillation (ENSO) climate cycles are significantly stronger than ENSO variations captured in the fossil corals. But the data also reveal large natural variations in past ENSO strength, making it difficult to attribute the 20th century intensification of ENSO to rising carbon dioxide levels. Such large natural fluctuations in ENSO activity are also apparent in multi-century climate model simulations.


Photo: Roland Klein, Norwegian Cruise Lines

Georgia Tech researchers work underwater to remove cores from living coral colonies growing on Fanning Island in the central Pacific. In the laboratory, these “modern” cores provide records of the most recent period of climate changes for comparison to the fossil coral climate reconstructions.

“We looked at the long-term variability of ENSO in the climate models and asked how it compares to the long-term variability of ENSO in the real world,” said Kim Cobb, an associate professor in the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology. “We show that they actually match fairly well. This project sets the stage for conducting more detailed data-model comparisons from specific time intervals to test the accuracy of ENSO characteristics in the various models.”

The research, sponsored by the National Science Foundation (NSF), was scheduled to be reported January 4 in the journal Science. Researchers from the Scripps Institution of Oceanography and the University of Minnesota also contributed to the work.

El Nino Southern Oscillation extremes drive changes in global temperature and precipitation patterns every two to seven years. The variations are particularly pronounced in the central tropical Pacific, where Cobb and her team collected the fossil corals used in this study. By analyzing the ratio of specific oxygen isotopes in the coral skeletons, the scientists obtained information about ENSO-related temperature and rainfall variations during the periods of time in which the corals grew.

“Fossil corals are the kings of El Nino reconstruction,” said Cobb. “Corals grow in the heart of the El Nino region, and with monthly-resolved records, they provide a very high level of detail.”

The researchers collected the coral samples by drilling into massive coral “rocks” rolled onto Pacific island beaches by the action of strong storms or tsunamis. Cobb and her team studied 17 such cores of varying lengths and ages recovered from beaches on Christmas and Fanning Islands, which are part of the Line Island chain located in the mid-Pacific.

The islands are ideal places for obtaining records of past ENSO activity because they are close enough to the source region for ENSO to be affected by its temperature and precipitation variations, but not so close that the islands’ corals are bleached by large temperature increases during strong El Nino warm events.

The study of each core began with careful dating, done by analyzing the ratio of uranium to thorium. That work was performed by co-authors Larry Edwards and Hai Cheng at the University of Minnesota. Once the age of each core was determined, Cobb and her team chose a subset of the collection to be studied in detail.

They sawed each core in half, then X-rayed the cross-sections to reveal the growth direction of each coral. The researchers then drilled out small samples of coral powder every millimeter down the core and analyzed them with mass spectrometers at Georgia Tech and the Scripps Institution of Oceanography to determine the ratio of oxygen isotopes.

The isotope ratio of the coral skeleton changes with the temperature and amount of rainfall, providing detailed information about environmental conditions during each period of the coral’s growth. As many as 20 samples are analyzed for each year of the coral’s lifetime.

“We are able to count back in time, following the seasonal cycles locked in the coral skeleton, as long as the core will allow us,” Cobb explained.

In all, Cobb’s team added 650 years of monthly-resolved information about ENSO variations across nearly 7,000 years. That required analyzing approximately 15,000 samples over the course of the study, which began in 2005.

Using the new sequences to quantify the range of natural variability in ENSO strength, the researchers have detected a modest, but statistically-significant increase in 20th century ENSO strength that may be related to anthropogenic climate change. However, the coral reconstruction shows an even higher level of ENSO strength 400 years ago, though its duration was shorter.

“The level of ENSO variability we see in the 20th century is not unprecedented,” Cobb said. “But the 20th century does stand out, statistically, as being higher than the fossil coral baseline.”

Information about the El Nino-Southern Oscillation is important for climate scientists because the cycle helps drive other aspects of global climate change.

“El Nino is something that people want to know about when they reconstruct past climate changes at a specific site,” Cobb said. “Our data will provide a reference for the magnitude of ENSO-related changes that may have occurred, and allow researchers to probe the causes of past climate changes evident in other paleoclimate records and in model simulations of past climates.”

The work has already called into question a long-held belief that ENSO was reduced some 6,000 years ago. Certain climate models support that picture, but Cobb said that fossil coral data from that period doesn’t support a reduction in ENSO strength.

Looking to future research, Cobb believes the work will be useful in helping scientists assess the accuracy of climate models.

“Prior to this publication, we had a smattering of coral records from this period of interest,” she said. “We now have tripled the amount of fossil coral data available to investigate these important questions. We have been able to provide a comprehensive view of recent variations in ENSO.”

Beyond the researchers already mentioned, the paper’s co-authors include Hussein R. Sayani and Emanuele Di Lorenzo from Georgia Tech and Christopher Charles, Niko Westphal and Jordan Watson from the Scripps Institution of Oceanography. In addition to the National Science Foundation, the project received assistance from Norwegian Cruise Lines, the National Geographic WAITT program, and the Palmyra Atoll Research Consortium.

The bulk of the research reported here was supported by the National Science Foundation (NSF) under Grant OCE-0752091. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the NSF.

Research News
Georgia Institute of Technology
171 North Avenue
Atlanta, Georgia 30332-0181 USA
Media Relations Contact: John Toon (404-894-6986)(jtoon@gatech.edu).
Writer: John Toon

John Toon | Newswise
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>