Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consumption, carbon emissions and international trade

10.05.2011
Accurately calculating the amount of carbon dioxide emitted in the process of producing and bringing products to our doorsteps is nearly impossible, but still a worthwhile effort, two Carnegie researchers claim in a commentary published online this week by Proceedings of the National Academy of Sciences.

The Global Ecology department's Ken Caldeira and Steven Davis commend the work of industrial ecologist Glen Peters and colleagues, published in the same journal late last month, and use that team's data to do additional analysis on the disparity between emissions and consumption in different parts of the world.

Caldeira and Davis point out that carbon is released at many stages of the production process including the energy used in creating each component of a product, CO2 released in making the manufacturing equipment, and carbon released by vehicles transporting factory workers to and from their jobs.

"Very quickly, we see that nothing exists in isolation and that to understand how much emission can be related to any particular action, we must have a reasonable accounting system that allocates total CO2 emissions to specific actions," Caldeira said. "The accounting system must conform to our intuitions about how responsibility should be shared among participants in complex systems."

Caldeira and Davis say Peters and his team are leaders in asking questions about how much CO2 consumption in the United States and other developed countries—used here to signify nations that made commitments under the Kyoto Protocol— is supported by CO2 in developing countries.

The earlier PNAS-published study looked at the impact of goods and services that were consumed in developed countries, but produced in developing ones. Peters and team found decreased emissions in the former since 1990, and increased emissions in the latter. But when emissions from the production of goods were transferred to the place where the goods were consumed, then the trend in developed countries was reversed.

The Carnegie scientists took this data and broke it down in terms of per-capita and per-dollar gross domestic product. They found that on a per-capita basis the average person in developed countries is responsible for more CO2 emissions than his or her counterpart in the developing world. And the amount of CO2 emitted per dollar of GDP is improving at similar rates between the two categories.

Caldeira and Davis concluded that "the focus on territorial emissions … has perhaps led us to underemphasize the role of consumption of goods and services in driving these emissions. It is important to look at all drivers of emissions, as everyone along the supply chain has a vested interest in the benefits that accrue from our fossil-fueled global economy."

The Department of Global Ecology was established in 2002 to help build the scientific foundations for a sustainable future. The department is located on the campus of Stanford University, but is an independent research organization funded by the Carnegie Institution. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Ken Caldeira | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: CO2 CO2 emission Caldeira Consumption Ecology Global Ecology

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>