Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate Change Projected to Alter Indiana Bat Maternity Range

Research by U.S. Forest Service scientists forecasts profound changes over the next 50 years in the summer range of the endangered Indiana bat.

In an article published in the journal Ecology and Evolution, Forest Service Southern Research Station researchers Susan Loeb and Eric Winters discuss the findings of one of the first studies designed to forecast the responses of a temperate zone bat species to climate change.

The researchers modeled the current maternity distribution of Indiana bats and then modeled future distributions based on four different climate change scenarios. “We found that due to projected changes in temperature, the most suitable summer range for Indiana bats would decline and become concentrated in the northeastern United States and the Appalachian Mountains,” says SRS research ecologist Loeb.

“The western part of the range (Missouri, Iowa, Illinois, Kentucky, Indiana, and Ohio)—currently considered the heart of Indiana bat maternity range—would become unsuitable under most climates that we modeled. This has important implications for managers in the Northeast and the Appalachian Mountains as these areas will most likely serve as climatic refuges for these animals when other parts of the range become too warm.”

In general, bat species in temperate zones such as Indiana bats may be more sensitive than many other groups of mammals to climate change because their reproductive cycles, hibernation patterns, and migration are closely tied to temperature. Indiana bat populations were in decline for decades due to multiple factors, including the destruction of winter hibernation sites and loss of summer maternity habitat.

Due to conservation efforts, researchers saw an increase in Indiana bat populations in 2000 to 2005, but with the onset of white-nose syndrome populations are declining again, with the number of Indiana bats reported hibernating in the northeastern United States down by 72 percent in 2011. The study predicts even more declines due to temperature rises from climate change, with much of the western portion of the current range forecast to be unsuitable for maternity habitat by 2060.

“Our model suggests that once average summer (May through August) maximum temperatures reach 27.4°C (81.3°F), the climatic suitability of the area for Indiana bat maternity colonies declines,” says Loeb. “Once they reach 29.9°C (85.8°F), the area is forecast to become completely unsuitable. Initially, Indiana bat maternity colonies may respond to warming temperatures by choosing roosts that have more shade than the roosts that they currently use. Eventually, it is likely that they will have to find more suitable climates.”

The models the researchers produced provide resource managers guidance on areas that are likely to contain maternity colonies now and in the future, depending on the availability of suitable habitat in those areas. “Managers in the western parts of the range should be aware of the potential changes in summer distributions due to climate change and not assume that declines are due to habitat loss or degradation,” says Loeb. “Management actions that foster high reproductive success and survival will be critical for the conservation and recovery of the species.”

Access the full text of the article:

Susan Loeb | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>