Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Projected to Alter Indiana Bat Maternity Range

29.01.2013
Research by U.S. Forest Service scientists forecasts profound changes over the next 50 years in the summer range of the endangered Indiana bat.

In an article published in the journal Ecology and Evolution, Forest Service Southern Research Station researchers Susan Loeb and Eric Winters discuss the findings of one of the first studies designed to forecast the responses of a temperate zone bat species to climate change.

The researchers modeled the current maternity distribution of Indiana bats and then modeled future distributions based on four different climate change scenarios. “We found that due to projected changes in temperature, the most suitable summer range for Indiana bats would decline and become concentrated in the northeastern United States and the Appalachian Mountains,” says SRS research ecologist Loeb.

“The western part of the range (Missouri, Iowa, Illinois, Kentucky, Indiana, and Ohio)—currently considered the heart of Indiana bat maternity range—would become unsuitable under most climates that we modeled. This has important implications for managers in the Northeast and the Appalachian Mountains as these areas will most likely serve as climatic refuges for these animals when other parts of the range become too warm.”

In general, bat species in temperate zones such as Indiana bats may be more sensitive than many other groups of mammals to climate change because their reproductive cycles, hibernation patterns, and migration are closely tied to temperature. Indiana bat populations were in decline for decades due to multiple factors, including the destruction of winter hibernation sites and loss of summer maternity habitat.

Due to conservation efforts, researchers saw an increase in Indiana bat populations in 2000 to 2005, but with the onset of white-nose syndrome populations are declining again, with the number of Indiana bats reported hibernating in the northeastern United States down by 72 percent in 2011. The study predicts even more declines due to temperature rises from climate change, with much of the western portion of the current range forecast to be unsuitable for maternity habitat by 2060.

“Our model suggests that once average summer (May through August) maximum temperatures reach 27.4°C (81.3°F), the climatic suitability of the area for Indiana bat maternity colonies declines,” says Loeb. “Once they reach 29.9°C (85.8°F), the area is forecast to become completely unsuitable. Initially, Indiana bat maternity colonies may respond to warming temperatures by choosing roosts that have more shade than the roosts that they currently use. Eventually, it is likely that they will have to find more suitable climates.”

The models the researchers produced provide resource managers guidance on areas that are likely to contain maternity colonies now and in the future, depending on the availability of suitable habitat in those areas. “Managers in the western parts of the range should be aware of the potential changes in summer distributions due to climate change and not assume that declines are due to habitat loss or degradation,” says Loeb. “Management actions that foster high reproductive success and survival will be critical for the conservation and recovery of the species.”

Access the full text of the article: http://onlinelibrary.wiley.com/doi/10.1002/ece3.440/abstract

Susan Loeb | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>