Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Projected to Alter Indiana Bat Maternity Range

29.01.2013
Research by U.S. Forest Service scientists forecasts profound changes over the next 50 years in the summer range of the endangered Indiana bat.

In an article published in the journal Ecology and Evolution, Forest Service Southern Research Station researchers Susan Loeb and Eric Winters discuss the findings of one of the first studies designed to forecast the responses of a temperate zone bat species to climate change.

The researchers modeled the current maternity distribution of Indiana bats and then modeled future distributions based on four different climate change scenarios. “We found that due to projected changes in temperature, the most suitable summer range for Indiana bats would decline and become concentrated in the northeastern United States and the Appalachian Mountains,” says SRS research ecologist Loeb.

“The western part of the range (Missouri, Iowa, Illinois, Kentucky, Indiana, and Ohio)—currently considered the heart of Indiana bat maternity range—would become unsuitable under most climates that we modeled. This has important implications for managers in the Northeast and the Appalachian Mountains as these areas will most likely serve as climatic refuges for these animals when other parts of the range become too warm.”

In general, bat species in temperate zones such as Indiana bats may be more sensitive than many other groups of mammals to climate change because their reproductive cycles, hibernation patterns, and migration are closely tied to temperature. Indiana bat populations were in decline for decades due to multiple factors, including the destruction of winter hibernation sites and loss of summer maternity habitat.

Due to conservation efforts, researchers saw an increase in Indiana bat populations in 2000 to 2005, but with the onset of white-nose syndrome populations are declining again, with the number of Indiana bats reported hibernating in the northeastern United States down by 72 percent in 2011. The study predicts even more declines due to temperature rises from climate change, with much of the western portion of the current range forecast to be unsuitable for maternity habitat by 2060.

“Our model suggests that once average summer (May through August) maximum temperatures reach 27.4°C (81.3°F), the climatic suitability of the area for Indiana bat maternity colonies declines,” says Loeb. “Once they reach 29.9°C (85.8°F), the area is forecast to become completely unsuitable. Initially, Indiana bat maternity colonies may respond to warming temperatures by choosing roosts that have more shade than the roosts that they currently use. Eventually, it is likely that they will have to find more suitable climates.”

The models the researchers produced provide resource managers guidance on areas that are likely to contain maternity colonies now and in the future, depending on the availability of suitable habitat in those areas. “Managers in the western parts of the range should be aware of the potential changes in summer distributions due to climate change and not assume that declines are due to habitat loss or degradation,” says Loeb. “Management actions that foster high reproductive success and survival will be critical for the conservation and recovery of the species.”

Access the full text of the article: http://onlinelibrary.wiley.com/doi/10.1002/ece3.440/abstract

Susan Loeb | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>