Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change alters cast of winter birds

20.10.2014

Over the past two decades, the resident communities of birds that attend eastern North America's backyard bird feeders in winter have quietly been remade, most likely as a result of a warming climate.

Writing this week in the journal Global Change Biology, University of Wisconsin-Madison wildlife biologists Benjamin Zuckerberg and Karine Princé document that once rare wintering bird species are now commonplace in the American Northeast.

Using more than two decades of data on 38 species of birds gathered by thousands of "citizen scientists" through the Cornell University Laboratory of Ornithology's Project FeederWatch, the Wisconsin researchers show that birds typically found in more southerly regions are gradually pushing north, restructuring the communities of birds that spend their winters in northern latitudes.

To the causal observer of backyard birds, the list of species becoming more common includes the readily familiar: cardinals, chipping sparrows and Carolina wrens. These birds and other warm-adapted species, according to Princé and Zuckerberg, have greatly expanded their wintering range in a warmer world, a change that may have untold consequences for North American ecosystems.

"Fifty years ago, cardinals were rare in the northeastern United States. Carolina wrens even more so," explains Zuckerberg, a UW-Madison assistant professor of forest and wildlife ecology.

An estimated 53 million Americans maintain feeding stations near their homes, according to the U.S. Fish and Wildlife Service, suggesting that increases in some species may be attributable to more readily available sources of food. However, that figure has remained constant, reflecting only a slight decline since 1991, indicating that environmental factors beyond the availability of food sources are at play.

The Wisconsin researchers measured the changes over time in the abundance of 38 bird species at feeders in eastern North America, specifically looking at the influence of changes in winter minimum temperature over a 22-year period on the flocks of birds that gather at backyard feeding stations.

"We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America," Princé and Zuckerberg write in their Global Change Biology report.

"People will likely start seeing new species in their backyards," says Princé, a UW-Madison postdoctoral fellow. "There can also be subtle changes in species abundance."

The changes in the mix of overwintering bird species is occurring against a backdrop of milder winters with less snow, more variable and intense precipitation events, and a shorter snow season, overall. Climate models predict even warmer temperatures occurring over the next 100 years, with seasonal climate effects being the most pronounced in northern regions of the world.

"We've been able to document in past studies that species are shifting in response to climate change," Zuckerberg says. "This study documents changes in the (winter bird) community structure. If you have a species coming into a new area, it can modify the composition of the community."

In any ecosystem, Zuckerberg notes, removing or introducing even a single species can have a cascade of ecological consequences, many of them unknown.

"These backyard birds are the canaries in the coal mine," Zuckerberg says. "Birds have always been very good indicators of environmental change. Whenever you have a reshuffling of a community of species, you have less of a sense of what change is going to be."

Princé notes that other environmental changes, such as the pervasive human impact on landscape, for example, may also be exerting an influence on the observed changes in the composition of birds attending winter feeding stations in eastern North America.

"Climate change should not be viewed as the sole driver of changes in winter bird communities, but this signal is a pretty strong one for climate change," she explains. "The changes we document are so broad in scope that anything that is occurring at a local level is swamped out by the scale of this analysis."

###

Terry Devitt, 608-262-8282, trdevitt@wisc.edu

CONTACT: Benjamin Zuckerberg, 608-263-0853, bzuckerberg@wisc.edu

Benjamin Zuckerberg | Eurek Alert!
Further information:
http://www.wisc.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>