Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cheetah menu: wildlife instead of cattle


Scientists from the German Leibniz Institute for Zoo and Wildlife Research (IZW) can give the all-clear: in a recent study they showed that cheetahs primarily prefer wildlife on their menu. The cheetah is a vulnerable species that only exists on Namibia’s commercial farmland in large populations. Here, local farmers see cheetahs as a potential threat for their cattle.

The conflict is an old one: wherever there are carnivorous wild animals, farmers are concerned about their livestock. In Namibia, the concern refers to the possible threat from cheetahs on cattle. When farmers in Namibia are missing a bovine calf, cheetahs are regularly under suspicion – nowhere else in the world are there as many animals of this vulnerable species as on commercial farmland in Namibia. But the suspicion can rarely be confirmed without demur.

Blood collection of a free-ranging cheetah on Namibian farmland for stable isotope analyses.

Photo: IZW/Gabor Czirjak

In their recent study, scientists of the IZW investigated whether cattle is on top of the cheetahs’ menu. For this purpose they used an indirect method with which they were able to assess the diet over longer periods. “Traditionally, carnivore diet is determined by examining samples of fresh faeces. Faecal samples only provide a snapshot of the diet, based on the detected hair and bone samples of prey animals. One cannot therefore conclude which food items cheetahs devour in the long run”, explains Christian Voigt from the IZW.

Instead the scientists used samples of cheetah hair to determine the stable isotope ratios of carbon and nitrogen. Herbivores have different food webs. One is based on shrubs, trees and herbs whose photosynthesis contains intermediate products with three carbon atoms (C3).

In contrast, grasses exhibit a C4 photosynthesis. These food webs can be differentiated with the help of the involved carbon isotopes. Herbivores typically only belong to one food web and the isotope ratio hence deposits in their body tissue. Small antelopes such as springbok or steenbok specialise on shrubs and herbs whereas the oryx antelope feeds on grass – just like the cattle. One step up in the food chain the isotope ratio of the prey transfers to its predator.

The study shows that herbivores of the C4 food chain, to which cattle belong, are nearly irrelevant to the cheetah’s diet. Grazers are only occasionally considered as prey by males when they occur in groups of two or three animals.

In this project the IZW scientists collaborated closely with the farmers. “We live with the farmers on their farmland and share our scientific results with them. In this way, we attain a very high acceptance”, emphasises Bettina Wachter. “The farmers passed on their experience in dealing with these big cats, as cheetahs cannot be simply lured with bait like many other carnivores”, she adds.

This is owed to the fact that cheetahs only eat prey they brought down themselves. Thus, aided by the farmers, the scientists installed box traps at marking trees, which were hidden by thorn bushes except for a narrow passage. The only way to reach their tree is passing the trap. Once a cheetah is captured it is sedated and thoroughly examined: body length and weight are determined, samples of blood and hair are taken and then the scientists release the cheetah equipped with a tracking collar.

“We conclude that the farmer’s problems are smaller than they had assumed before this study”, Voigt sums up. This study, published in the scientific online journal PLOS ONE, will contribute to the protection of cheetahs – but not in adversity to the interest of the farmers. “We understand their position. The concepts of species conversation always need to be balanced against the livelihood of humans”, says Wachter. The study is therefore an important mile stone to resolve the conflict between farmers and cheetahs.

Voigt CC, Thalwitzer S, Melzheimer J, Blanc A-S, Jago M, Wachter B: (2014): The conflict between cheetahs and humans on Namibian farmland elucidated by stable isotope diet analysis. PLOS ONE 10.1371/journal.pone.0101917.

Leibniz Institute for Zoo- and Wildlife Research (IZW)
Alfred-Kowalke-Str. 17
10315 Berlin

Christian C. Voigt
Tel.: +49 30 5168-517

Bettina Wachter
Tel.: +49 30 5168-518

Steven Seet (press officer)
Tel.: +49 30 5168-125

Background information:
The Leibniz Institute for Zoo and Wildlife Research (IZW) investigates the vitality and adaptability of wildlife populations in mammalian and avian species of outstanding ecological interest that face anthropogenic challenges. It studies the adaptive value of traits in the life cycle of wildlife, wildlife diseases and clarifies the biological basis and development of methods for the protection of threatened species. Such knowledge is a precondition for a scientifically based approach to conservation and for the development of concepts for the ecologically sustainable use of natural resources. The IZW belongs to the Forschungsverbund Berlin e.V. (

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>