Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheetah menu: wildlife instead of cattle

28.08.2014

Scientists from the German Leibniz Institute for Zoo and Wildlife Research (IZW) can give the all-clear: in a recent study they showed that cheetahs primarily prefer wildlife on their menu. The cheetah is a vulnerable species that only exists on Namibia’s commercial farmland in large populations. Here, local farmers see cheetahs as a potential threat for their cattle.

The conflict is an old one: wherever there are carnivorous wild animals, farmers are concerned about their livestock. In Namibia, the concern refers to the possible threat from cheetahs on cattle. When farmers in Namibia are missing a bovine calf, cheetahs are regularly under suspicion – nowhere else in the world are there as many animals of this vulnerable species as on commercial farmland in Namibia. But the suspicion can rarely be confirmed without demur.


Blood collection of a free-ranging cheetah on Namibian farmland for stable isotope analyses.

Photo: IZW/Gabor Czirjak

In their recent study, scientists of the IZW investigated whether cattle is on top of the cheetahs’ menu. For this purpose they used an indirect method with which they were able to assess the diet over longer periods. “Traditionally, carnivore diet is determined by examining samples of fresh faeces. Faecal samples only provide a snapshot of the diet, based on the detected hair and bone samples of prey animals. One cannot therefore conclude which food items cheetahs devour in the long run”, explains Christian Voigt from the IZW.

Instead the scientists used samples of cheetah hair to determine the stable isotope ratios of carbon and nitrogen. Herbivores have different food webs. One is based on shrubs, trees and herbs whose photosynthesis contains intermediate products with three carbon atoms (C3).

In contrast, grasses exhibit a C4 photosynthesis. These food webs can be differentiated with the help of the involved carbon isotopes. Herbivores typically only belong to one food web and the isotope ratio hence deposits in their body tissue. Small antelopes such as springbok or steenbok specialise on shrubs and herbs whereas the oryx antelope feeds on grass – just like the cattle. One step up in the food chain the isotope ratio of the prey transfers to its predator.

The study shows that herbivores of the C4 food chain, to which cattle belong, are nearly irrelevant to the cheetah’s diet. Grazers are only occasionally considered as prey by males when they occur in groups of two or three animals.

In this project the IZW scientists collaborated closely with the farmers. “We live with the farmers on their farmland and share our scientific results with them. In this way, we attain a very high acceptance”, emphasises Bettina Wachter. “The farmers passed on their experience in dealing with these big cats, as cheetahs cannot be simply lured with bait like many other carnivores”, she adds.

This is owed to the fact that cheetahs only eat prey they brought down themselves. Thus, aided by the farmers, the scientists installed box traps at marking trees, which were hidden by thorn bushes except for a narrow passage. The only way to reach their tree is passing the trap. Once a cheetah is captured it is sedated and thoroughly examined: body length and weight are determined, samples of blood and hair are taken and then the scientists release the cheetah equipped with a tracking collar.

“We conclude that the farmer’s problems are smaller than they had assumed before this study”, Voigt sums up. This study, published in the scientific online journal PLOS ONE, will contribute to the protection of cheetahs – but not in adversity to the interest of the farmers. “We understand their position. The concepts of species conversation always need to be balanced against the livelihood of humans”, says Wachter. The study is therefore an important mile stone to resolve the conflict between farmers and cheetahs.

Publication:
Voigt CC, Thalwitzer S, Melzheimer J, Blanc A-S, Jago M, Wachter B: (2014): The conflict between cheetahs and humans on Namibian farmland elucidated by stable isotope diet analysis. PLOS ONE 10.1371/journal.pone.0101917.

Contact
Leibniz Institute for Zoo- and Wildlife Research (IZW)
Alfred-Kowalke-Str. 17
10315 Berlin
Germany

Christian C. Voigt
Tel.: +49 30 5168-517
voigt@izw-berlin.de

Bettina Wachter
Tel.: +49 30 5168-518
wachter@izw-berlin.de

Steven Seet (press officer)
Tel.: +49 30 5168-125
seet@izw-berlin.de

Background information:
The Leibniz Institute for Zoo and Wildlife Research (IZW) investigates the vitality and adaptability of wildlife populations in mammalian and avian species of outstanding ecological interest that face anthropogenic challenges. It studies the adaptive value of traits in the life cycle of wildlife, wildlife diseases and clarifies the biological basis and development of methods for the protection of threatened species. Such knowledge is a precondition for a scientifically based approach to conservation and for the development of concepts for the ecologically sustainable use of natural resources. The IZW belongs to the Forschungsverbund Berlin e.V. (www.fv-berlin.de)
www.izw-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>