Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CCNY Landscape Architect Offers Storm Surge Defense Alternatives

20.11.2012
Catherine Seavitt Nordenson says environmentally friendly ‘soft infrastructure’ mitigates flood damage without sending harm elsewhere

The flooding in New York and New Jersey caused by Superstorm Sandy prompted calls from Gov. Andrew Cuomo and other officials to consider building storm surge barriers to protect Lower Manhattan from future catastrophes.



But, such a strategy could make things even worse for outlying areas that were hit hard by the hurricane, such as Staten Island, the New Jersey Shore and Long Island’s South Shore, a City College of New York landscape architecture professor warns.

“If you mitigate to protect Lower Manhattan, you increase the impact in other areas,” says Catherine Seavitt Nordenson, associate professor of landscape architecture in CCNY's Spitzer School of Architecture. “Everyone outside of the surge protection zone would be in jeopardy because the water doesn’t get reduced, it just goes somewhere else. It’s an environmental justice issue. You can’t just save Wall Street.”

Professor Seavitt calls, instead, for deploying a storm defense strategy that combines elements of soft infrastructure with the hardening of existing infrastructure such as the subway system, highways and power plants.

'Techniques from nature and ecology'
“The idea of soft infrastructure is to use techniques from nature and ecology to improve resiliency,” she explains. “Environments that are more resilient bounce back faster after storms, and greater resiliency reduces the velocity of and damage caused by the water’s surge.” Additionally, it would be much less expensive than building storm surge barriers, with costs running to hundreds of millions of dollars instead of billions.

She first proposed development of soft infrastructure in “On the Water/Palisade Bay,” a report published in 2010 in collaboration with structural engineer Guy Nordenson and architect Adam Yarinsky, and funded by the Fellows of the American Institute of Architects’ biannual Latrobe Prize. Mr. Nordenson is Professor Seavitt’s husband.

The team’s research focused on New York’s Upper Bay, which is bounded by Manhattan, Brooklyn, Staten Island and New Jersey. Its proposal consisted of strategies to adapt to and mitigate the effects of rising sea levels caused by climate change, including increased potential storm surges from hurricanes and nor’easters.

“We wanted to show how soft infrastructure could be used to transform the coastal edge in order to create a healthier ecology and reduce the extent of storm damage,” she says. “There are things we can do besides building higher and higher seawalls everywhere. For example, if we replace a wall with a gradient edge that slopes into the water or we give the shoreline a more irregular shape there will be more room to accommodate water.”

Among the techniques it proposed were restoring and enlarging wetlands, creating reefs and archipelagoes of artificial islands and seeding oyster beds. Spoils from harbor dredging and deepening, which is regularly performed by the U.S. Army Corps of Engineers, could be used for these beneficial purposes.

Reefs and wetlands would mitigate destruction by absorbing water and dissipating wave energy. Archipelagoes of small, artificial islands would weaken wave energy in the water column. Oysters and other mollusks would biologically filter and help cleanse the water in the bay.

Improved resiliency
“Through our research we found that improving water quality and wetlands ecology would improve the area’s resiliency to storm,” she notes. “If you can absorb water in wetland areas, it has a place to go. It can percolate into the earth instead of rebounding from a seawall or overtopping a wall. We can engineer solutions to absorb water and slow its velocity. There may still be flooding, but there will be less damage.”

Additionally, the report called for using – and extending – old abandoned piers and extracting slips into the city to allow water to enter flood zones in a more controlled way, thus minimizing damage. Calm water areas could be established behind piers, which would serve as storm surge buffers. Water would still enter some streets, but these could be engineered as bioswales, incorporating a simple gravity flow system that would enable the waters to be absorbed, and safely and readily recede.

Even if soft infrastructure strategies were implemented, some critical infrastructure would still need to be hardened, i.e. made waterproof, Professor Seavitt notes. Specifically, she recommends protecting subway entrances and sidewalk grates to prevent flooding of the public transit system, relocating or hardening waterfront power plants and moving critical communications and power infrastructure out of the basements of commercial and residential buildings.

Soft infrastructure techniques can be applied, as well, to protect populated areas in the outlying coastal regions that suffered extensive storm damage such as Long Island, Staten Island and the Jersey Shore. Offshore reefs and barrier islands could be created to protect shorelines and inhabited barrier islands. Many of these areas are shallower than the Upper Bay so it may be easier to work in them, she says.

One technology that could play a role in this process is a recent Dutch invention known as a sand motor, in which enormous quantities of sand are deposited offshore. Waves, currents and tides distribute it in a natural way, creating a protective barrier island.

Currently, Professor Seavitt is working with Guy Nordenson & Associates and the Port Authority of New York and New Jersey on a pilot project to create an artificial island at the Gowanus Flats, a shallow section of Upper Bay off Brooklyn’s Sunset Harbor waterfront. She also notes that efforts are underway to create new oyster reefs around Governors Island as well as wetland restoration through the reuse of dredged sediment in Jamaica Bay.

Ellis Simon | EurekAlert!
Further information:
http://www.ccny.cuny.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>