Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Camels emit less methane than cows or sheep

10.04.2014

When digesting ruminants exhale methane. Their contribution to this global greenhouse gas is considerable. So far the assumption had been that camels with similar digestion produce the same amount of the climate-damaging gas. However, researchers at the University of Zurich and ETH Zurich have now shown camels release less methane than ruminants.

Ruminant cows and sheep account for a major proportion of the methane produced around the world. Currently around 20 percent of global methane emissions stem from ruminants.

In the atmosphere methane contributes to the greenhouse effect – that’s why researchers are looking for ways of reducing methane production by ruminants.

Comparatively little is known about the methane production of other animal species – but one thing seems to be clear: Ruminants produce more of the gas per amount of converted feed than other herbivores.

The only other animal group that regularly “ruminates” like ruminants are camels. This includes alpacas, llamas, dromedaries and Bactrian camels. They, too, have multi-chambered forestomachs. They, too, regurgitate food from the forestomach in order to reduce it in size through renewed chewing.

That’s why people assumed up to now that camels produce a similar amount of methane to ruminants. Researchers at the University of Zurich and ETH Zurich have now examined this assumption in a project sponsored by the Swiss National Science Foundation and have come to the following conclusion: in absolute terms camels release less methane than cows and sheep of comparable body size.

However, if one compares methane production with the amount of converted feed, then it is the same in both groups. “To calculate the proportion of methane produced, different estimated values should be used for camels than those used for ruminants”, explains Marcus Clauss from the Vetsuisse Faculty of the University of Zurich.

Lower metabolism – less feed – less methane

The modified calculation of the “methane budget” may be important for those countries with lots of camels – like the dromedaries in the Middle East and in Australia, or the alpacas and llamas in various South American countries. In cooperation with Zurich Zoo and private camel keepers, scientists from the University of Zurich and ETH Zurich have measured methane production in three types of camelids.

“The results show us that camels have a lower metabolism. Hence, they need less feed and release less methane than our domestic ruminants”, says the vet Marcus Clauss. The lower metabolism of camels could explain why they thrive particularly in areas with a shortage of food – desert and barren mountain regions.


Literature:
Marie T. Dittmann, Ullrich Runge, Richard A. Lang, Dario Moser, Cordula Galeffi, Michael Kreuzer, Marcus Clauss. Methane emission by camelids. PLOS ONE. April 9, 2014. doi:http://dx.plos.org/10.1371/journal.pone.0094363

Contacts:
Prof. Dr. Marcus Clauss
Department for Small Animals
University of Zurich
Tel. +41 44 635 83 76
Email: mclauss@vetclinics.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Further reports about: Atmosphere Australia ETH alpacas emissions metabolism methane emissions ruminates sheep

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>