Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Camels emit less methane than cows or sheep


When digesting ruminants exhale methane. Their contribution to this global greenhouse gas is considerable. So far the assumption had been that camels with similar digestion produce the same amount of the climate-damaging gas. However, researchers at the University of Zurich and ETH Zurich have now shown camels release less methane than ruminants.

Ruminant cows and sheep account for a major proportion of the methane produced around the world. Currently around 20 percent of global methane emissions stem from ruminants.

In the atmosphere methane contributes to the greenhouse effect – that’s why researchers are looking for ways of reducing methane production by ruminants.

Comparatively little is known about the methane production of other animal species – but one thing seems to be clear: Ruminants produce more of the gas per amount of converted feed than other herbivores.

The only other animal group that regularly “ruminates” like ruminants are camels. This includes alpacas, llamas, dromedaries and Bactrian camels. They, too, have multi-chambered forestomachs. They, too, regurgitate food from the forestomach in order to reduce it in size through renewed chewing.

That’s why people assumed up to now that camels produce a similar amount of methane to ruminants. Researchers at the University of Zurich and ETH Zurich have now examined this assumption in a project sponsored by the Swiss National Science Foundation and have come to the following conclusion: in absolute terms camels release less methane than cows and sheep of comparable body size.

However, if one compares methane production with the amount of converted feed, then it is the same in both groups. “To calculate the proportion of methane produced, different estimated values should be used for camels than those used for ruminants”, explains Marcus Clauss from the Vetsuisse Faculty of the University of Zurich.

Lower metabolism – less feed – less methane

The modified calculation of the “methane budget” may be important for those countries with lots of camels – like the dromedaries in the Middle East and in Australia, or the alpacas and llamas in various South American countries. In cooperation with Zurich Zoo and private camel keepers, scientists from the University of Zurich and ETH Zurich have measured methane production in three types of camelids.

“The results show us that camels have a lower metabolism. Hence, they need less feed and release less methane than our domestic ruminants”, says the vet Marcus Clauss. The lower metabolism of camels could explain why they thrive particularly in areas with a shortage of food – desert and barren mountain regions.

Marie T. Dittmann, Ullrich Runge, Richard A. Lang, Dario Moser, Cordula Galeffi, Michael Kreuzer, Marcus Clauss. Methane emission by camelids. PLOS ONE. April 9, 2014. doi:

Prof. Dr. Marcus Clauss
Department for Small Animals
University of Zurich
Tel. +41 44 635 83 76

Weitere Informationen:

Nathalie Huber | Universität Zürich

Further reports about: Atmosphere Australia ETH alpacas emissions metabolism methane emissions ruminates sheep

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>