Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Camels emit less methane than cows or sheep

10.04.2014

When digesting ruminants exhale methane. Their contribution to this global greenhouse gas is considerable. So far the assumption had been that camels with similar digestion produce the same amount of the climate-damaging gas. However, researchers at the University of Zurich and ETH Zurich have now shown camels release less methane than ruminants.

Ruminant cows and sheep account for a major proportion of the methane produced around the world. Currently around 20 percent of global methane emissions stem from ruminants.

In the atmosphere methane contributes to the greenhouse effect – that’s why researchers are looking for ways of reducing methane production by ruminants.

Comparatively little is known about the methane production of other animal species – but one thing seems to be clear: Ruminants produce more of the gas per amount of converted feed than other herbivores.

The only other animal group that regularly “ruminates” like ruminants are camels. This includes alpacas, llamas, dromedaries and Bactrian camels. They, too, have multi-chambered forestomachs. They, too, regurgitate food from the forestomach in order to reduce it in size through renewed chewing.

That’s why people assumed up to now that camels produce a similar amount of methane to ruminants. Researchers at the University of Zurich and ETH Zurich have now examined this assumption in a project sponsored by the Swiss National Science Foundation and have come to the following conclusion: in absolute terms camels release less methane than cows and sheep of comparable body size.

However, if one compares methane production with the amount of converted feed, then it is the same in both groups. “To calculate the proportion of methane produced, different estimated values should be used for camels than those used for ruminants”, explains Marcus Clauss from the Vetsuisse Faculty of the University of Zurich.

Lower metabolism – less feed – less methane

The modified calculation of the “methane budget” may be important for those countries with lots of camels – like the dromedaries in the Middle East and in Australia, or the alpacas and llamas in various South American countries. In cooperation with Zurich Zoo and private camel keepers, scientists from the University of Zurich and ETH Zurich have measured methane production in three types of camelids.

“The results show us that camels have a lower metabolism. Hence, they need less feed and release less methane than our domestic ruminants”, says the vet Marcus Clauss. The lower metabolism of camels could explain why they thrive particularly in areas with a shortage of food – desert and barren mountain regions.


Literature:
Marie T. Dittmann, Ullrich Runge, Richard A. Lang, Dario Moser, Cordula Galeffi, Michael Kreuzer, Marcus Clauss. Methane emission by camelids. PLOS ONE. April 9, 2014. doi:http://dx.plos.org/10.1371/journal.pone.0094363

Contacts:
Prof. Dr. Marcus Clauss
Department for Small Animals
University of Zurich
Tel. +41 44 635 83 76
Email: mclauss@vetclinics.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Further reports about: Atmosphere Australia ETH alpacas emissions metabolism methane emissions ruminates sheep

More articles from Ecology, The Environment and Conservation:

nachricht New approach for environmental test on livestock drugs
27.07.2016 | Universität Zürich

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>