Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Boat noise stops fish finding home

Boat noise disrupts orientation behaviour in larval coral reef fish, according to new research from the Universities of Bristol, Exeter and Liège. Reef fish are normally attracted by reef sound but the study, conducted in French Polynesia, found that fish are more likely to swim away from recordings of reefs when boat noise is added.
Sophie Holles, a PhD researcher at the University of Bristol and one of the study's authors, said: "Natural underwater sound is used by many animals to find suitable habitat, and traffic noise is one of the most widespread pollutants. If settlement is disrupted by boat traffic, the resilience of habitats like reefs could be affected."

Sound travels better underwater than in air and reefs are naturally noisy places: fish and invertebrates produce feeding and territorial sounds while wind, waves and currents create other background noise. Boats can be found around all coastal environments where people live and the noise they make spreads far and wide.

Co-author, Dr Steve Simpson, a marine biologist at the University of Exeter, said: "Boat noise may scare fish, affecting their ecology. Since one in five people in the world rely on fish as their major source of protein, regulating traffic noise in important fisheries areas could help marine communities and the people that depend on them."

The study used controlled field experiments with settlement stage coral reef fish larvae. Larvae in a long plastic tube could decide to swim towards or away from a speaker playing back different sounds. In ambient noise equal numbers of fish were found in each section of the tube and in reef noise most fish swam towards the sound. But when boat noise was played along with reef noise more fish swam away from the sound than in reef noise alone.

Co-author, Dr Andy Radford from the University of Bristol, said: "This is the first indication that noise pollution can affect orientation behaviour during the critical settlement stage. Growing evidence for the impact of noise on fish suggests that consideration should be given to the regulation of human activities in protected areas."

The research is published today in Marine Ecology Progress Series.


'Boat noise disrupts orientation behaviour in a coral reef fish' by Sophie Holles, Stephen D. Simpson, Andrew N. Radford, Laetitia Berten and David Lecchini in Marine Ecology Progress Series

Hannah Johnson | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>