Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologist Maps the Family Tree of All Known Snake and Lizard Groups

10.05.2013
Assistant Professor of Biology Alex Pyron’s Published Study Shows the Evolution of Over 4,000 Reptiles

A George Washington University biologist and a team of researchers have created the first large-scale evolutionary family tree for every snake and lizard around the globe.



The findings were recently published in the journal BMC Evolutionary Biology. Alex Pyron, the Robert F. Griggs Assistant Professor of Biology in GW’s Columbian College of Arts and Sciences, along with researchers from the City University of New York and Arizona State University, detail the cataloging of 4,161 species of snakes and lizards, or squamates.

“Squamates include all lizards and snakes found throughout the globe, including around 9,500 species on every continent except Antarctica, and found in most oceans,” said Dr. Pyron. “This is everything from cobras to garter snakes to tiny geckos to the Komodo Dragon to the Gila Monster. They range from tiny threadsnakes that can curl up on a dime to 10 feet monitor lizards and 30 foot pythons. They eat everything from ants to wildebeest.”

The evolutionary family tree, or phylogeny, includes all families and subfamilies and most genus and species groups, said Dr. Pyron. While there are gaps on some branches of the tree, the structure of the tree goes a long way toward fully mapping every genus and species group.

“It's like building an incomplete family tree for your family, but with half of the ‘children’ sampled. You're in it, but not your brother, one of your cousins is, but not another. However, because it's so complete, we know where the missing relatives go because there's no longer as much mystery as to how the missing species, or cousins, are related, with a few notable exceptions for some remaining species.

“This is also a community effort. We sequenced hundreds of these species ourselves but took thousands more from public databases, building on the work of others.”

Understanding how various snakes and lizards are connected to each other fills a major gap in knowledge, said Dr. Pyron, because before this, there were no single reference for how all lizards and snakes were related or what their classification was.

“A phylogeny and taxonomy is fundamental for all fields of biology that use lizards and snakes, to understand how to classify the species being studied, to interpret biological patterns in terms of relatedness, and even at a more basic level, to count how many species are in an area, for example, for conservation management purposes.”

This project has been in the works since 2008 with the last five years being the most intense. It was funded by the National Science Foundation Postdoctoral Research Fellowship in Biological Informatics.

The researchers used DNA sequencing technology to genotype, or identify, the DNA of thousands of lizards and snakes.

“We have laid down the structure of squamate relationships and yet this is still the beginning,” said Dr. Pyron. "As hundreds of new species are described every year from around the glove, this estimate of the squamate tree of life shows us what we do know, and more importantly, what we don't know, and will hopefully spur even more research on the amazing diversity of lizards and snakes."

The Columbian College
Established in 1821 in the heart of the nation’s capital, The George Washington University Columbian College of Arts and Sciences is the largest of GW’s academic units. It encompasses the School of Media and Public Affairs, the Trachtenberg School of Public Policy and Public Administration and more than 40 departments and programs for undergraduate, graduate and professional studies. The Columbian College provides the foundation for GW’s commitment to the liberal arts and a broad education for all students. An internationally recognized faculty and active partnerships with prestigious research institutions place Columbian College at the forefront in advancing policy, enhancing culture and transforming lives through research and discovery.
George Washington University
In the heart of the nation's capital with additional programs in Virginia, the George Washington University was created by an Act of Congress in 1821. Today, GW is the largest institution of higher education in the District of Columbia. The university offers comprehensive programs of undergraduate and graduate liberal arts study, as well as degree programs in medicine, public health, law, engineering, education, business and international affairs. Each year, GW enrolls a diverse population of undergraduate, graduate and professional students from all 50 states, the District of Columbia, and more than 130 countries.
Latarsha Gatlin
202-994-5631; lgatlin@gwu.edu
Michelle Sherrard
202-994-1423; mcs1@gwu.edu

Latarsha Gatlin | Newswise
Further information:
http://www.gwu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>