Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ant Study Could Help Future Robot Teams Work Underground

21.05.2013
Future teams of subterranean search and rescue robots may owe their success to the lowly fire ant, a much-despised insect whose painful bites and extensive networks of underground tunnels are all-too-familiar to people living in the southern United States.

By studying fire ants in the laboratory using video tracking equipment and X-ray computed tomography, researchers have uncovered fundamental principles of locomotion that robot teams could one day use to travel quickly and easily through underground tunnels. Among the principles is building tunnel environments that assist in moving around by limiting slips and falls, and by reducing the need for complex neural processing.

Among the study’s surprises was the first observation that ants in confined spaces use their antennae for locomotion as well as for sensing the environment.

“Our hypothesis is that the ants are creating their environment in just the right way to allow them to move up and down rapidly with a minimal amount of neural control,” said Dan Goldman, an associate professor in the School of Physics at the Georgia Institute of Technology, and one of the paper’s co-authors. “The environment allows the ants to make missteps and not suffer for them. These ants can teach us some remarkably effective tricks for maneuvering in subterranean environments.”

The research was scheduled to be reported May 20 in the early online edition of the journal Proceedings of the National Academy of Sciences. The work was sponsored by the National Science Foundation’s Physics of Living Systems program.

In a series of studies carried out by graduate research assistant Nick Gravish, groups of fire ants (Solenopsis invicta) were placed into tubes of soil and allowed to dig tunnels for 20 hours. To simulate a range of environmental conditions, Gravish and postdoctoral fellow Daria Monaenkova varied the size of the soil particles from 50 microns on up to 600 microns, and also altered the moisture content from 1 to 20 percent.

While the particle size and moisture content did produce changes in the volume of tunnels produced and the depth that the ants dug, the diameters of the tunnels remained constant – and comparable to the length of the creatures’ own bodies: about 3.5 millimeters.

“Independent of whether the soil particles were as large as the animals’ heads or whether they were fine powder, or whether the soil was damp or contained very little moisture, the tunnel size was always the same within a tight range,” said Goldman. “The size of the tunnels appears to be a design principle used by the ants, something that they were controlling for.”

Gravish believes such a scaling effect allows the ants to make best use of their antennae, limbs and body to rapidly ascend and descend in the tunnels by interacting with the walls and limiting the range of possible missteps.

“In these subterranean environments where their leg motions are certainly hindered, we see that the speeds at which these ants can run are the same,” he said. “The tunnel size seems to have little, if any, effect on locomotion as defined by speed.”

The researchers used X-ray computed tomography to study tunnels the ants built in the test chambers, gathering 168 observations. They also used video tracking equipment to collect data on ants moving through tunnels made between two clear plates – much like “ant farms” sold for children – and through a maze of glass tubes of differing diameters.

The maze was mounted on an air piston which could periodically be fired, dropping the maze with a force of as much as 27 times that of gravity. The sudden movement caused about half of the ants in the tubes to lose their footing and begin to fall. That led to one of the study’s most surprising findings: the creatures used their antennae to help grab onto the tube walls as they fell.

“A lot of us who have studied social insects for a long time have never seen antennae used in that way,” said Michael Goodisman, a professor in the Georgia Tech School of Biology and one of the paper’s other co-authors. “It’s incredible that they catch themselves with their antennae. This is an adaptive behavior that we never would have expected.”

By analyzing ants falling in the glass tubes, the researchers determined that the tube diameter played a key role in whether the animals could arrest their fall.

In future studies, the researchers plan to explore how the ants excavate their tunnel networks, which involves moving massive amounts of soil. That soil is the source of the large mounds for which fire ants are known.

While the research focused on understanding the principles behind how ants move in confined spaces, the results could have implications for future teams of small robots.

“The problems that the ants face are the same kinds of problems that a digging robot working in a confined space would potentially face – the need for rapid movement, stability and safety – all with limited sensing and brain power,” said Goodisman. “If we want to build machines that dig, we can build in controls like these ants have.”

Why use fire ants for studying underground locomotion?

“These animals dig virtually non-stop, and they are good, repeatable study subjects,” Goodisman explained. “And they are very convenient for us to study. We can go outside the laboratory door and collect them virtually anywhere.”

The research described here has been sponsored by the National Science Foundation (NSF) under grant POLS 095765, and by the Burroughs Wellcome Fund. The findings and conclusions are those of the authors and do not necessarily represent the official views of the NSF.

CITATION: Nick Gravish, et al., “Climbing, falling and jamming during ant locomotion in confined environments,” (Proceedings of the National Academy of Sciences, 2013).

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181
Media Relations
Contact: John Toon
(404-894-6986)(jtoon@gatech.edu)
Writer: John Toon

John Toon | Newswise
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>