Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne ecologists help balance delicate African ecosystem

03.03.2009
The African savanna is world famous for its wildlife, especially the iconic large herbivores such as elephants, zebras, and giraffes.

But managing these ecosystems and balancing the interests of the large charismatic mammals with those of other species has been a perpetual challenge for park and game mangers.

Now a new study published in the Proceedings of the National Academy of Sciences reports the successful test of new remote-sensing technology to monitor the impact of management decisions on the savannah ecosystem.

"These African savannas are extremely complex," said lead author Gregory Asner of the Carnegie Institution's Department of Global Ecology. "On the ground they are notoriously hard to assess in terms what management decisions, such as controlling fire and large herbivore populations, are doing to the entire ecosystem."

The aircraft-based Carnegie Airborne Observatory (CAO) combines a laser-based 3-D mapping system with high-fidelity imaging spectrometers to create detailed 3-D maps of vegetation over large areas at high resolution (approximately 50 centimeters). For this study, the research team surveyed the vegetation of about 4,000 acres of savanna in Kruger National Park, South Africa. Included in the survey were areas of different soil types and experimental plots where all herbivores larger than a rabbit had been excluded for periods up to 41 years, allowing researchers to discern the effects of both soils and large herbivores on savanna vegetation.

Not surprisingly, the CAO survey found less plant growth and more bare ground in areas where large herbivores had been allowed to graze, compared to areas from which they had been excluded. But the 3-D mapping capability of the CAO revealed differences in the structural complexity of vegetation between herbivore and herbivore-free areas. This has implications for the types of other species these areas are likely to support. And by quickly and precisely quantifying the vegetation differences from the air, the CAO team demonstrated the potential of the new technology as a management tool.

"We are really creating a new way to do ecology," said co-author Shaun Levick. "What we're doing is collecting data for thousands of acres at extremely high 3-D resolution and getting clear answers for the first time as to what different management decisions do in the ecosystem."

Among the surprises in the study's results is that the impact of the large herbivores on vegetation cover is highest in areas where the soil had the highest concentration of nutrients, not areas with poor-quality soil. The researchers interpret this to mean that herbivores concentrate their feeding in areas of high-quality forage, so these areas suffer a disproportionate impact.

The team is preparing a similar study on the effects of fire on savanna vegetation in Kruger Park, according to Asner.

"There have been decades of excellent ground-based research on how different policies regarding fire and wildlife management play out," said Asner. "But the savanna ecosystem is spatially very complicated. With the CAO I think we're getting a picture of the large-scale impact of management decisions. That's what makes this series of studies unique."

Greg Asner | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>