Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne ecologists help balance delicate African ecosystem

03.03.2009
The African savanna is world famous for its wildlife, especially the iconic large herbivores such as elephants, zebras, and giraffes.

But managing these ecosystems and balancing the interests of the large charismatic mammals with those of other species has been a perpetual challenge for park and game mangers.

Now a new study published in the Proceedings of the National Academy of Sciences reports the successful test of new remote-sensing technology to monitor the impact of management decisions on the savannah ecosystem.

"These African savannas are extremely complex," said lead author Gregory Asner of the Carnegie Institution's Department of Global Ecology. "On the ground they are notoriously hard to assess in terms what management decisions, such as controlling fire and large herbivore populations, are doing to the entire ecosystem."

The aircraft-based Carnegie Airborne Observatory (CAO) combines a laser-based 3-D mapping system with high-fidelity imaging spectrometers to create detailed 3-D maps of vegetation over large areas at high resolution (approximately 50 centimeters). For this study, the research team surveyed the vegetation of about 4,000 acres of savanna in Kruger National Park, South Africa. Included in the survey were areas of different soil types and experimental plots where all herbivores larger than a rabbit had been excluded for periods up to 41 years, allowing researchers to discern the effects of both soils and large herbivores on savanna vegetation.

Not surprisingly, the CAO survey found less plant growth and more bare ground in areas where large herbivores had been allowed to graze, compared to areas from which they had been excluded. But the 3-D mapping capability of the CAO revealed differences in the structural complexity of vegetation between herbivore and herbivore-free areas. This has implications for the types of other species these areas are likely to support. And by quickly and precisely quantifying the vegetation differences from the air, the CAO team demonstrated the potential of the new technology as a management tool.

"We are really creating a new way to do ecology," said co-author Shaun Levick. "What we're doing is collecting data for thousands of acres at extremely high 3-D resolution and getting clear answers for the first time as to what different management decisions do in the ecosystem."

Among the surprises in the study's results is that the impact of the large herbivores on vegetation cover is highest in areas where the soil had the highest concentration of nutrients, not areas with poor-quality soil. The researchers interpret this to mean that herbivores concentrate their feeding in areas of high-quality forage, so these areas suffer a disproportionate impact.

The team is preparing a similar study on the effects of fire on savanna vegetation in Kruger Park, according to Asner.

"There have been decades of excellent ground-based research on how different policies regarding fire and wildlife management play out," said Asner. "But the savanna ecosystem is spatially very complicated. With the CAO I think we're getting a picture of the large-scale impact of management decisions. That's what makes this series of studies unique."

Greg Asner | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>