Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Active forest management to reduce fire could aid northern spotted owl

The northern spotted owl, a threatened species in the Pacific Northwest, would actually benefit in the long run from active management of the forest lands that form its primary habitat and are increasingly vulnerable to stand-replacing fire, researchers conclude in a recent study.
Whatever short-term drawbacks there may be from logging, thinning, or other fuel reduction activities in areas with high fire risk would be more than offset by improved forest health and fire-resistance characteristics, the scientists said, which allow more spotted owl habitat to survive in later decades.

Decades of fire suppression and a “hands-off” approach to management on many public lands have created overcrowded forests that bear little resemblance to their historic condition – at the expense of some species such as the northern spotted owl, researchers said.

The findings were published in Forest Ecology and Management, a professional journal, by researchers from Oregon State University and Michigan State University.

“For many years now, for species protection as well as other reasons, we’ve avoided almost all management on many public forest lands,” said John Bailey, an associate professor in the Department of Forest Engineering, Resources and Management at Oregon State University.

“The problem is that fire doesn’t respect the boundaries we create for wildlife protection,” Bailey said. “Given the current condition of Pacific Northwest forests, the single biggest threat facing spotted owls and other species is probably stand-replacement wildfire.”

In the recent project, scientists used computer models to compare what would happen to vulnerable forest lands if they were managed, or simply left alone. They found that over a long-term period of about the next 75 years, active management of sites with high fire hazard would be more favorable for spotted owl conservation.

A “risk averse” strategy in fire-prone landscapes is not the best long-term alternative to conserve protected species, they said.

As years go by, forest conditions will continue to get even more crowded, insect and disease epidemics will increase, and forests will face stress from a warmer and often drier climate. Fire levels will increase and the problem will only get worse, Bailey said.

“Without active management to reduce risks, we never really put fire out, we just delay it,” he said. “We can keep kicking the can down the road, but sooner or later a stand-replacing fire will come that we can’t put out. Then the fires are enormous.”

Historically, Pacific Northwest forests, in both the wetter conditions west of the Cascade Range and especially the drier forests east of the mountains, were subject to higher frequency of fire, fewer trees with less overall biomass, and healthier forest conditions at a lower tree density than today. Many fires did not climb into the tree canopies and kill the tree, and even stand-replacement fires were more limited in size and scope.

A return to such conditions would significantly change the shape of modern forests, in the process producing more forest products and perhaps nurture a biofuels industry. But it would also result in less overall biomass and less sequestration of carbon, a factor in global warming concerns. The result, however, would be forests that more closely resembled their historic status and protected a wider range of species, including the northern spotted owl, Bailey said.

This analysis focused on fire-prone areas, the researchers said, and they also noted that a broad commitment to such an approach would be needed. Models suggested that more than 20 percent of a fire-prone landscape would need to be treated to begin altering fire behavior and reduce loss of spotted owl habitat.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

John Bailey | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>