Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much of a good thing can be bad for corals

15.10.2012
New study in Nature Climate Change shows that having too many algal symbionts makes corals bleach more severely in response to warming

A new study by scientists at the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science shows that corals may be more severely impacted by climate warming when they contain too many symbiotic algae.


A new study by scientists Ross Cunning and Andrew Baker at the University of Miami shows that corals may be more severely impacted by climate warming when they contain too many symbiotic algae. The single-celled algae living inside corals are usually the key to coral success, providing the energy needed to build massive reef frameworks. However, when temperatures become too warm, these algae are expelled from corals during episodes of coral 'bleaching' that can lead to widespread death of corals. Until now, it was thought that corals with more algal symbionts would be more tolerant of bleaching because they had 'more symbionts to lose.' The new findings, published in Nature Climate Change shows that the more symbiotic algae a coral had, the more severely it bleached, showing that too much of a good thing can actually be bad.

Credit: P.W. Glynn

The single-celled algae living inside corals are usually the key to coral success, providing the energy needed to build massive reef frameworks. However, when temperatures become too warm, these algae are expelled from corals during episodes of coral 'bleaching' that can lead to widespread death of corals.

Until now, it was thought that corals with more algal symbionts would be more tolerant of bleaching because they had 'more symbionts to lose.' The new study shows that the opposite is true.

"We discovered that the more symbiotic algae a coral has, the more severely it bleaches, showing that too much of a good thing can actually be bad," said Ross Cunning, Ph.D. student and lead author of the study. "We also learned that the number of algae in corals varies over time, which helps us better understand coral bleaching risk."

His research was conducted using cauliflower coral (Pocillopora damicornis) collected from the Pacific coast of Panama. The corals were monitored for six months at the UM's Experimental Hatchery, where they slowly warmed up and ultimately bleached. The number of symbiotic algae in the corals was studied by analyzing DNA samples with new highly sensitive genetic techniques that determine the ratio of algal cells to coral cells. This improved technique made the discovery possible by showing that corals with more algae bleached more severely than those with fewer algae.

"Corals regulate their symbionts to match the environment in which they are found, and this study shows there is a real cost to having too many," said co-author Andrew Baker, associate professor at UM's Rosenstiel School. "There are real-world implications of this. Corals will be more vulnerable to bleaching if they are found in environments which increase the number of symbionts, such as coastal reefs polluted by wastewater and runoff. If we can improve water quality, we might be able to buy some time to help these reefs avoid the worst effects of climate change.

"Other environmental changes, including ocean acidification as a result of increasing carbon dioxide emissions, might also influence bleaching vulnerability in ways we haven't thought of before," Baker added.

The article entitled "Excess algal symbionts increase the susceptibility of reef corals to bleaching" authored by Cunning and Baker appears in the Advance Online Publication of Nature Climate Change on October 14th. Support was provided by a Pew Fellowship in Marine Conservation to Andrew Baker, and grants from the National Science Foundation (OCE-0527184 and OCE-0526361). Ross Cunning was supported by a University of Miami Fellowship and a National Science Foundation Graduate Research Fellowship.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>