Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much of a good thing can be bad for corals

15.10.2012
New study in Nature Climate Change shows that having too many algal symbionts makes corals bleach more severely in response to warming

A new study by scientists at the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science shows that corals may be more severely impacted by climate warming when they contain too many symbiotic algae.


A new study by scientists Ross Cunning and Andrew Baker at the University of Miami shows that corals may be more severely impacted by climate warming when they contain too many symbiotic algae. The single-celled algae living inside corals are usually the key to coral success, providing the energy needed to build massive reef frameworks. However, when temperatures become too warm, these algae are expelled from corals during episodes of coral 'bleaching' that can lead to widespread death of corals. Until now, it was thought that corals with more algal symbionts would be more tolerant of bleaching because they had 'more symbionts to lose.' The new findings, published in Nature Climate Change shows that the more symbiotic algae a coral had, the more severely it bleached, showing that too much of a good thing can actually be bad.

Credit: P.W. Glynn

The single-celled algae living inside corals are usually the key to coral success, providing the energy needed to build massive reef frameworks. However, when temperatures become too warm, these algae are expelled from corals during episodes of coral 'bleaching' that can lead to widespread death of corals.

Until now, it was thought that corals with more algal symbionts would be more tolerant of bleaching because they had 'more symbionts to lose.' The new study shows that the opposite is true.

"We discovered that the more symbiotic algae a coral has, the more severely it bleaches, showing that too much of a good thing can actually be bad," said Ross Cunning, Ph.D. student and lead author of the study. "We also learned that the number of algae in corals varies over time, which helps us better understand coral bleaching risk."

His research was conducted using cauliflower coral (Pocillopora damicornis) collected from the Pacific coast of Panama. The corals were monitored for six months at the UM's Experimental Hatchery, where they slowly warmed up and ultimately bleached. The number of symbiotic algae in the corals was studied by analyzing DNA samples with new highly sensitive genetic techniques that determine the ratio of algal cells to coral cells. This improved technique made the discovery possible by showing that corals with more algae bleached more severely than those with fewer algae.

"Corals regulate their symbionts to match the environment in which they are found, and this study shows there is a real cost to having too many," said co-author Andrew Baker, associate professor at UM's Rosenstiel School. "There are real-world implications of this. Corals will be more vulnerable to bleaching if they are found in environments which increase the number of symbionts, such as coastal reefs polluted by wastewater and runoff. If we can improve water quality, we might be able to buy some time to help these reefs avoid the worst effects of climate change.

"Other environmental changes, including ocean acidification as a result of increasing carbon dioxide emissions, might also influence bleaching vulnerability in ways we haven't thought of before," Baker added.

The article entitled "Excess algal symbionts increase the susceptibility of reef corals to bleaching" authored by Cunning and Baker appears in the Advance Online Publication of Nature Climate Change on October 14th. Support was provided by a Pew Fellowship in Marine Conservation to Andrew Baker, and grants from the National Science Foundation (OCE-0527184 and OCE-0526361). Ross Cunning was supported by a University of Miami Fellowship and a National Science Foundation Graduate Research Fellowship.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>