Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much of a good thing can be bad for corals

15.10.2012
New study in Nature Climate Change shows that having too many algal symbionts makes corals bleach more severely in response to warming

A new study by scientists at the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science shows that corals may be more severely impacted by climate warming when they contain too many symbiotic algae.


A new study by scientists Ross Cunning and Andrew Baker at the University of Miami shows that corals may be more severely impacted by climate warming when they contain too many symbiotic algae. The single-celled algae living inside corals are usually the key to coral success, providing the energy needed to build massive reef frameworks. However, when temperatures become too warm, these algae are expelled from corals during episodes of coral 'bleaching' that can lead to widespread death of corals. Until now, it was thought that corals with more algal symbionts would be more tolerant of bleaching because they had 'more symbionts to lose.' The new findings, published in Nature Climate Change shows that the more symbiotic algae a coral had, the more severely it bleached, showing that too much of a good thing can actually be bad.

Credit: P.W. Glynn

The single-celled algae living inside corals are usually the key to coral success, providing the energy needed to build massive reef frameworks. However, when temperatures become too warm, these algae are expelled from corals during episodes of coral 'bleaching' that can lead to widespread death of corals.

Until now, it was thought that corals with more algal symbionts would be more tolerant of bleaching because they had 'more symbionts to lose.' The new study shows that the opposite is true.

"We discovered that the more symbiotic algae a coral has, the more severely it bleaches, showing that too much of a good thing can actually be bad," said Ross Cunning, Ph.D. student and lead author of the study. "We also learned that the number of algae in corals varies over time, which helps us better understand coral bleaching risk."

His research was conducted using cauliflower coral (Pocillopora damicornis) collected from the Pacific coast of Panama. The corals were monitored for six months at the UM's Experimental Hatchery, where they slowly warmed up and ultimately bleached. The number of symbiotic algae in the corals was studied by analyzing DNA samples with new highly sensitive genetic techniques that determine the ratio of algal cells to coral cells. This improved technique made the discovery possible by showing that corals with more algae bleached more severely than those with fewer algae.

"Corals regulate their symbionts to match the environment in which they are found, and this study shows there is a real cost to having too many," said co-author Andrew Baker, associate professor at UM's Rosenstiel School. "There are real-world implications of this. Corals will be more vulnerable to bleaching if they are found in environments which increase the number of symbionts, such as coastal reefs polluted by wastewater and runoff. If we can improve water quality, we might be able to buy some time to help these reefs avoid the worst effects of climate change.

"Other environmental changes, including ocean acidification as a result of increasing carbon dioxide emissions, might also influence bleaching vulnerability in ways we haven't thought of before," Baker added.

The article entitled "Excess algal symbionts increase the susceptibility of reef corals to bleaching" authored by Cunning and Baker appears in the Advance Online Publication of Nature Climate Change on October 14th. Support was provided by a Pew Fellowship in Marine Conservation to Andrew Baker, and grants from the National Science Foundation (OCE-0527184 and OCE-0526361). Ross Cunning was supported by a University of Miami Fellowship and a National Science Foundation Graduate Research Fellowship.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>