Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


It's only natural: Lawrence Livermore helps find link to arsenic-contaminated groundwater

Human activities are not the primary cause of arsenic found in groundwater in Bangladesh.

Instead, a team of researchers from Lawrence Livermore National Laboratory, Barnard College, Columbia University, University of Dhaka, Desert Research Institute and University of Tennessee found that the arsenic in groundwater in the region is part of a natural process that predates any recent human activity, such as intensive pumping.

The results appear in the March 4 edition of the Proceedings of the National Academy of Sciences.

Millions of people in Bangladesh and neighboring countries are chronically exposed to arsenic-contaminated groundwater, which causes skin lesions and increases the risk of certain cancers. Bacterial respiration of organic carbon releases naturally-occurring arsenic from sediment into groundwater, but the source of this organic carbon remains unclear.

Brian Mailloux of Barnard College and his team isolated microbial DNA from several depth intervals in arsenic-contaminated aquifers in Bangladesh and analyzed the DNA's radiocarbon signature, which reflects whether the organic carbon used by the microbes derives primarily from younger, surface-derived sources that are transported by groundwater into the aquifers, or older, sediment-derived sources.

Using "bomb pulse" radiocarbon analysis, Lawrence Livermore scientist Bruce Buchholz dated the DNA of groundwater bacteria. He found that the DNA samples were consistently younger than the sediment, suggesting that the microbes favor using surface-derived carbon.

The surface-derived carbon has flowed into the aquifer over hundreds to thousands of years -- a rate that is approximately 100 times slower than groundwater flow. The results suggest that recent human activities, such as intensive groundwater pumping, have not yet significantly affected the release of arsenic into the groundwater at this site.

Above-ground testing of nuclear weapons during the Cold War (1955-1963) caused a surge in global levels of carbon-14 (14C), and remains in all living things. Carbon-14 or radiocarbon is naturally produced by cosmic ray interactions with air and is present at low levels in the atmosphere and food. Although nuclear weapon testing was conducted at only a few locations, excess levels of 14C in the atmosphere rapidly dispersed and equalized around the globe.

According to Buchholz, "The bomb curve forms a chronometer of the past 60 years."

The radiocarbon signature of DNA is a direct measure of the carbon used during microbial respiration and growth. In this study, the team developed a method to filter, extract and purify DNA from groundwater aquifers for radiocarbon analysis to determine the organic carbon pools fueling microbial reduction.

"We were able to separate the recent bomb pulse radiocarbon from the natural carbon signature and found the arsenic levels are now directly tied to a natural process as opposed to being driven by human activities," Buchholz said.

The results may help scientists understand the causes of arsenic contamination in the region, and the development of potential mitigation strategies.

More Information

"Cold cases heat up through Lawrence Livermore approach to identifying remains," LLNL news release, Oct. 10, 2012

"Putting teeth into forensic science," LLNL news release, May 19, 2010

"Date for a heart cell," Science & Technology Review, April/May 2010

"New technique determines that the number of fat cells remains constant in all body types," LLNL news release, May 5, 2008

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht NOAA declares third ever global coral bleaching event
08.10.2015 | NOAA Headquarters

nachricht Blacklists Protect the Rainforest
24.09.2015 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>