Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's only natural: Lawrence Livermore helps find link to arsenic-contaminated groundwater

05.03.2013
Human activities are not the primary cause of arsenic found in groundwater in Bangladesh.

Instead, a team of researchers from Lawrence Livermore National Laboratory, Barnard College, Columbia University, University of Dhaka, Desert Research Institute and University of Tennessee found that the arsenic in groundwater in the region is part of a natural process that predates any recent human activity, such as intensive pumping.

The results appear in the March 4 edition of the Proceedings of the National Academy of Sciences.

Millions of people in Bangladesh and neighboring countries are chronically exposed to arsenic-contaminated groundwater, which causes skin lesions and increases the risk of certain cancers. Bacterial respiration of organic carbon releases naturally-occurring arsenic from sediment into groundwater, but the source of this organic carbon remains unclear.

Brian Mailloux of Barnard College and his team isolated microbial DNA from several depth intervals in arsenic-contaminated aquifers in Bangladesh and analyzed the DNA's radiocarbon signature, which reflects whether the organic carbon used by the microbes derives primarily from younger, surface-derived sources that are transported by groundwater into the aquifers, or older, sediment-derived sources.

Using "bomb pulse" radiocarbon analysis, Lawrence Livermore scientist Bruce Buchholz dated the DNA of groundwater bacteria. He found that the DNA samples were consistently younger than the sediment, suggesting that the microbes favor using surface-derived carbon.

The surface-derived carbon has flowed into the aquifer over hundreds to thousands of years -- a rate that is approximately 100 times slower than groundwater flow. The results suggest that recent human activities, such as intensive groundwater pumping, have not yet significantly affected the release of arsenic into the groundwater at this site.

Above-ground testing of nuclear weapons during the Cold War (1955-1963) caused a surge in global levels of carbon-14 (14C), and remains in all living things. Carbon-14 or radiocarbon is naturally produced by cosmic ray interactions with air and is present at low levels in the atmosphere and food. Although nuclear weapon testing was conducted at only a few locations, excess levels of 14C in the atmosphere rapidly dispersed and equalized around the globe.

According to Buchholz, "The bomb curve forms a chronometer of the past 60 years."

The radiocarbon signature of DNA is a direct measure of the carbon used during microbial respiration and growth. In this study, the team developed a method to filter, extract and purify DNA from groundwater aquifers for radiocarbon analysis to determine the organic carbon pools fueling microbial reduction.

"We were able to separate the recent bomb pulse radiocarbon from the natural carbon signature and found the arsenic levels are now directly tied to a natural process as opposed to being driven by human activities," Buchholz said.

The results may help scientists understand the causes of arsenic contamination in the region, and the development of potential mitigation strategies.

More Information

"Cold cases heat up through Lawrence Livermore approach to identifying remains," LLNL news release, Oct. 10, 2012

"Putting teeth into forensic science," LLNL news release, May 19, 2010

"Date for a heart cell," Science & Technology Review, April/May 2010

"New technique determines that the number of fat cells remains constant in all body types," LLNL news release, May 5, 2008

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht From waste to resource – how can we turn garbage into gold?
27.04.2016 | DLR Projektträger

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>