Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIPT Develops Unique Greenhouse Gas Meter


MIPT’s Laboratory for the Spectroscopy of Planetary Atmospheres has come up with a high-resolution meter to gauge the concentration of gases in the atmosphere with unparalleled precision. The infrared spectrum radiometer is described in an article recently published in the journal Optics Express

The paper, authored by Alexander Rodin, Artem Klimchuk, Alexander Nadezhdinsky, Dmitry Churbanov and Maxim Spiridonov, says that the new spectrum radiometer is 100 times more precise than the best available near-infrared spectrometers, and 10 times more accurate than a meter created on a similar principle recently described by NASA’s Goddard Center.

Tracking down carbon dioxide, methane and other gases with simultaneous determination of their concentrations at different altitudes is necessary, in particular, for research into global warming. The vast majority of scientists do not doubt the correlation between growing temperatures on the planet and the greenhouse effect, but so far it has been impossible to positively predict future changes in global warming.

A current lack of data on the distribution of greenhouse gases also compromises the forecasting and, consequently, the development of appropriate response measures. This is because in order to create a dense network of monitoring stations, many large, sophisticated and expensive spectrometers are needed.

The meter created by the Russian scientists is distinctive not only for its very high resolution, but also for its easy maintenance. The authors of the paper stress that their meter is far less susceptible to external disturbances compared with existing analogues. Its performance depends to a lesser extent on vibration, humidity and exposure to both low and high temperatures.

Alexander Rodin explained that the meter uses the heterodyne principle, known for over 100 years. The essence of the method could be best described as follows: a received signal is added to a reference signal to form an intermediate frequency signal. Generally, it does not matter whether it’s a radio wave or sunlight passing through the atmosphere, as is the case in the new meter.

The converted signal is much easier to process, namely to amplify and to filter. Moreover, when the frequency of the reference signal is sufficiently stable, extremely high sensitivity can be achieved. The only problem is that a signal of very high frequency, whether it is infrared or optical, is not so easy to add to the reference source – it must be very stable and at the same time emit radiation of high intensity.

The first heterodyne radios, operating at megahertz frequencies, were created in the early 20th century, becoming mass-produced toward the end of the Second World War; while in the terahertz sphere heterodyne devices appeared only recently. For near-infrared radiation, whose frequency is a few hundred times greater, the task of combining the signals appeared to be compounded by a number of technical difficulties.

Calculations showed that a more “touchy” device is needed for a heterodyne signal in the near infrared radiation spectrum. Even a shift of a few hundredths of a wavelength (i.e. a couple of dozen nanometers) could be critical, but eventually the researchers from MIPT and their colleagues from the Moscow-based General Physics Institute managed to create a heterodyne near-infrared detector, in which a key role was played by laser stabilization.

They used an optical system that directs a laser beam to two different points, one of them a special module for mixing it with sunlight passed through the atmosphere (i.e. the analyzed signal) and the other a cell with a pure sample of the gas to be identified.

Since the gas absorbs electromagnetic waves at a specific frequency, the brightness of the radiation going through the cell indicates how far the laser has deviated from the reference frequency. And this, in turn, makes it possible to adjust the frequency of the optical oscillator, i.e. laser (the word laser is an acronym of “light amplification by stimulated emission of radiation”).

New spectrum radiometers may be used at both stationary and mobile stations monitoring the atmosphere, according to the official site of the IVOLGA project, which is another abbreviation translated from Russian as “infrared heterodyne fiber analyzer.”

MIPT’s press service would like to thank Dr. Alexander Rodin for his generous help in writing this article.

Alexandra O. Borissova | Eurek Alert!
Further information:

Further reports about: Methane Physics atmosphere carbon dioxide detector greenhouse spectrum wavelength waves

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>