Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIPT Develops Unique Greenhouse Gas Meter

18.06.2014

MIPT’s Laboratory for the Spectroscopy of Planetary Atmospheres has come up with a high-resolution meter to gauge the concentration of gases in the atmosphere with unparalleled precision. The infrared spectrum radiometer is described in an article recently published in the journal Optics Express

The paper, authored by Alexander Rodin, Artem Klimchuk, Alexander Nadezhdinsky, Dmitry Churbanov and Maxim Spiridonov, says that the new spectrum radiometer is 100 times more precise than the best available near-infrared spectrometers, and 10 times more accurate than a meter created on a similar principle recently described by NASA’s Goddard Center.

Tracking down carbon dioxide, methane and other gases with simultaneous determination of their concentrations at different altitudes is necessary, in particular, for research into global warming. The vast majority of scientists do not doubt the correlation between growing temperatures on the planet and the greenhouse effect, but so far it has been impossible to positively predict future changes in global warming.

A current lack of data on the distribution of greenhouse gases also compromises the forecasting and, consequently, the development of appropriate response measures. This is because in order to create a dense network of monitoring stations, many large, sophisticated and expensive spectrometers are needed.

The meter created by the Russian scientists is distinctive not only for its very high resolution, but also for its easy maintenance. The authors of the paper stress that their meter is far less susceptible to external disturbances compared with existing analogues. Its performance depends to a lesser extent on vibration, humidity and exposure to both low and high temperatures.

Alexander Rodin explained that the meter uses the heterodyne principle, known for over 100 years. The essence of the method could be best described as follows: a received signal is added to a reference signal to form an intermediate frequency signal. Generally, it does not matter whether it’s a radio wave or sunlight passing through the atmosphere, as is the case in the new meter.

The converted signal is much easier to process, namely to amplify and to filter. Moreover, when the frequency of the reference signal is sufficiently stable, extremely high sensitivity can be achieved. The only problem is that a signal of very high frequency, whether it is infrared or optical, is not so easy to add to the reference source – it must be very stable and at the same time emit radiation of high intensity.

The first heterodyne radios, operating at megahertz frequencies, were created in the early 20th century, becoming mass-produced toward the end of the Second World War; while in the terahertz sphere heterodyne devices appeared only recently. For near-infrared radiation, whose frequency is a few hundred times greater, the task of combining the signals appeared to be compounded by a number of technical difficulties.

Calculations showed that a more “touchy” device is needed for a heterodyne signal in the near infrared radiation spectrum. Even a shift of a few hundredths of a wavelength (i.e. a couple of dozen nanometers) could be critical, but eventually the researchers from MIPT and their colleagues from the Moscow-based General Physics Institute managed to create a heterodyne near-infrared detector, in which a key role was played by laser stabilization.

They used an optical system that directs a laser beam to two different points, one of them a special module for mixing it with sunlight passed through the atmosphere (i.e. the analyzed signal) and the other a cell with a pure sample of the gas to be identified.

Since the gas absorbs electromagnetic waves at a specific frequency, the brightness of the radiation going through the cell indicates how far the laser has deviated from the reference frequency. And this, in turn, makes it possible to adjust the frequency of the optical oscillator, i.e. laser (the word laser is an acronym of “light amplification by stimulated emission of radiation”).

New spectrum radiometers may be used at both stationary and mobile stations monitoring the atmosphere, according to the official site of the IVOLGA project, which is another abbreviation translated from Russian as “infrared heterodyne fiber analyzer.”

MIPT’s press service would like to thank Dr. Alexander Rodin for his generous help in writing this article.

Alexandra O. Borissova | Eurek Alert!
Further information:
http://mipt.ru/en/news/gas_meter_20140616

Further reports about: Methane Physics atmosphere carbon dioxide detector greenhouse spectrum wavelength waves

More articles from Machine Engineering:

nachricht Generating eco-friendly power with metal rotor blades
04.05.2015 | Fraunhofer Institute for Machine Tools and Forming Technology IWU

nachricht World’s biggest trailing suction dredger
29.04.2015 | Siemens AG

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>