Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers fabricate more efficient polymer solar cells

03.12.2010
Researchers from Iowa State University and the Ames Laboratory have developed a process capable of producing a thin and uniform light-absorbing layer on textured substrates that improves the efficiency of polymer solar cells by increasing light absorption.

"Our technology efficiently utilizes the light trapping scheme," said Sumit Chaudhary, an Iowa State assistant professor of electrical and computer engineering and an associate of the U.S. Department of Energy's Ames Laboratory. "And so solar cell efficiency improved by 20 percent."

Details of the fabrication technology were recently published online by the journal Advanced Materials.

Chaudhary said the key to improving the performance of solar cells made from flexible, lightweight and easy-to-manufacture polymers was to find a textured substrate pattern that allowed deposition of a light-absorbing layer that's uniformly thin - even as it goes up and down flat-topped ridges that are less than a millionth of a meter high.

The result is a polymer solar cell that captures more light within those ridges - including light that's reflected from one ridge to another, he said. The cell is also able to maintain the good electrical transport properties of a thin, uniform light-absorbing layer.

Tests indicated the research team's light-trapping cells increased power conversion efficiency by 20 percent over flat solar cells made from polymers, Chaudhary said. Tests also indicated that light captured at the red/near infrared band edge increased by 100 percent over flat cells.

Researchers working with Chaudhary on the solar cell project are Kai-Ming Ho, an Iowa State Distinguished Professor of Physics and Astronomy and an Ames Laboratory faculty scientist; Joong-Mok Park, an assistant scientist with the Ames Laboratory; and Kanwar Singh Nalwa, a graduate student in electrical and computer engineering and a student associate of the Ames Laboratory. The research was supported by the Iowa Power Fund, the Ames Laboratory and the Department of Energy's Office of Basic Energy Sciences.

The idea of boosting the performance of polymer solar cells by using a textured substrate is not a new one, Chaudhary said. The technology is commonly used in traditional, silicon-based solar cells.

But previous attempts to use textured substrates in polymer solar cells have failed because they require extra processing steps or technically challenging coating technologies. Some attempts produced a light-absorbing layer with air gaps or a too-thin layer over the ridges or a too-thick layer over the valleys. The result was a loss of charges and short circuiting at the valleys and ridges, resulting in poor solar cell performance.

But, get the substrate texture and the solution-based coating just right, "and we're getting more power out," Nalwa said.

The Iowa State University Research Foundation Inc. has filed a patent for the substrate and coating technology and is working to license the technology to solar cell manufacturers.

"This may be an old idea we're using," Chaudhary said, "but it's never before been successfully implemented in polymer solar cells."

Sumit Chaudhary | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>