Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wall-to-wall power

06.11.2001


On a roll: solar panels could soon be as cheap and easy to print as wallpaper.
© Photodisc / NSU


Solar cells printed like wallpaper.

Solar cells might one day be produced by the roll, as cheaply and easily as wallpaper. Scientists in Arizona are using screen-printing, a technique developed for patterning fabrics, to produce plastic solar cells1.

The technique is another step towards the general availability of solar power from flexible devices on plastic sheets or glass panels. The basic materials of a photovoltaic cell are inexpensive, but combining them into a working device is currently costly. This limits our exploitation of the sun’s potential to provide clean energy.



The organic cells manufactured by Ghassan Jabbour and colleagues at the University of Arizona in Tucson have about a quarter of the efficiency of commercial silicon devices (which turn 10-20 per cent of light energy into electricity). But, being cheap to produce, they can make up in quantity what they lack in quality.

In conventional screen-printing, a taut piece of fabric, patterned by masking some areas with substances such as wax that repel colouring agents, is covered with ink or dye. The screen is then held horizontally over the object to be printed, and a rubber blade is swept across the back, pressing the coloured surface down to produce an image.

Jabbour’s group print very flat, very thin cells onto glass in a similar way. First, they coat the glass with a transparent, electrically conducting material that acts as one of the solar cell’s electrodes. On top of this, they lay down a thin film of a polymer, which helps to gather current from the photovoltaic material.

Finally, they deposit a blend of two organic compounds that convert light into electricity. One, a carbon-based molecule called a fullerene, produces charged particles that carry an electrical current when light shines onto the molecules. The other, a polymer, ferries the current to electrodes on the top and bottom of the cell.

Under blue light, these screen-printed solar cells have an efficiency of 4.3 per cent. They are probably less efficient for white sunlight, so there is work to be done before the devices are good enough for commercial use.

Organic solar cells were first reported last year by Bell Labs in the United States2. hese latest screen-printed cells are based on prototypes made by team member Sean Shaheen and colleagues earlier this year3.

References
  1. Shaheen, S. E., Radspinner, R., Peyghambarian, N. & Jabbour, G. E. Fabrication of bulk heterojunction plastic solar cells by screen printing. Applied Physics Letters, 79, 2996 - 2998, (2001).

  2. Schon, J. H., Kloc, C.H. & Batlogg, B. Efficient photovoltaic energy conversion in pentacene-based heterojunctions. Applied Physics Letters, 77, 2473 - 2475, (2000).

  3. Shaheen, S. E. et al. 2.5% efficient organic plastic solar cells. Applied Physics Letters, 78, 841 - 843, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011108/011108-5.html
http://www.nature.com/nsu/

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>