Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energetic nanoparticles swing sunlight into electricity

21.02.2008
The electrons in nanoparticles of noble metal oscillate together apace with the frequency of the light. This phenomenon can be exploited to produce better and cheaper solar cells, scientists at Chalmers University of Technology in Sweden have shown.

Electricity-generating solar cells are one of the most attractive alternatives for creating a long-term sustainable energy system, but thus far solar cells have not been able to compete economically with fossil fuels. Researchers are now looking at how nanotechnology can contribute in bringing down the cost.

Solar cells are constructed of layers that absorb sunlight and convert it to electrical current. Thinner solar cells can yield both cheaper and more plentiful electricity than today's cells, if their capacity to absorb sunlight is optimized.

One way to enhance the absorption of the solar harvesting material in a solar cell is to make use of nanoparticles of noble metal. Carl Hägglund at Chalmers has looked at how this can be done in his recently completed doctoral dissertation.

The particles involved have special optical properties owing to the fact that their electrons oscillate back and forth together at the same rate as the frequency of the light, that is, the color of the light. The particles catch the light as tiny antennas and via the oscillations the energy is passed on as electricity. These oscillations, plasmons, are very forceful at certain so-called plasmon resonance frequencies, which in turn are influenced by the form, size, and surroundings of the particles.

"What we've done is to make use of nanotechnology to produce the particles and we've therefore been able to determine the properties and see how they can enhance the absorption of light of different colors,"

says Carl Hägglund.

In the context of solar cells, the great challenge is to efficiently convert the energy that is absorbed in the electron oscillation to energy in the form of electricity.

"We show that it is precisely the oscillations of the particles that yield the energy, how it is transmitted to the material and becomes electricity. It might have turned out, for example, that the oscillations simply generated heat instead," says Carl Hägglund.

The efficiency of the best solar cells today is already very high. The possibility of achieving even better solar cells therefore lies in using less material and in lowering production costs.

With solar cells of specially designed nanoparticles of gold, which is what Carl Hägglund has looked at, a layer only a few nanometers thick is required for the particles to be able to absorb light in an efficient way.

The dissertation examines the effect of nanoparticles of noble metal on two different types of solar cells, which can be said to represent two extremes. In one type of solar cell the light is absorbed in molecules on a surface, and in the other type deep inside the material.

The experimental and theoretical results show that the particles can help transmit the light's energy to useful electricity in several different ways and that it's possible to enhance the absorption of solar cells both on the surface and deep inside via different mechanisms.

This work has been carried out within the framework of a materials science research program (PhotoNano) funded by the Swedish Foundation for Strategic Research.

For more information, please contact: Carl Hägglund, Chemical Physics, Department of Applied Physics, Chalmers University of Technology,
phone: +46 (0)31-772 33 76; cell phone: +46 (0)738-154696.
carl.hagglund@chalmers.se
Supervisor: Professor Bengt Kasemo, Chemical Physics, Department of Applied Physics, Chalmers University of Technology, phone: +46 (0)31 772 33 70; cell phone: +46 (0)708-28 26 01 kasemo@fy.chalmers.se

Pressofficer: Sofie Hebrand; Tel:+4631-772 84 64; Fax:+4631-772 59 44; sofie.hebrand@chalmers.se

Sofie Hebrand | idw
Further information:
http://chalmersnyheter.chalmers.se/chalmers03/english/Article.jsp?article=11030
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=67239

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>