Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving Geothermal Energy

30.04.2015

University of Utah team chosen for geothermal research

Generating electricity from the hot rocks deep underground is clean, safe and renewable – and it’s about to take a step forward in Utah.


University of Utah College of Engineering

University of Utah research professor, Joseph Moore, is leading a team from the U's Energy & Geoscience Institute selected by the U.S. Department of Energy to study new techniques and technology for developing geothermal energy. The team, one of five selected for a new DOE project called FORGE, is proposing to build an underground geothermal laboratory near Milford in Beaver County, Utah.

The U.S. Department of Energy announced Monday that a team from the University of Utah’s Energy & Geoscience Institute is one of five research groups selected to study new techniques for developing geothermal energy in places where it’s not currently feasible. EGI is part of the U’s College of Engineering.

The U team of geologists and engineers, led by EGI research professor Joseph Moore, will evaluate establishing an underground geothermal laboratory about 10 miles north of Milford, Beaver County, within the Milford renewable energy corridor. This corridor is home to two geothermal plants and a 306-megawatt wind farm. Utah’s geothermal power plants provide enough electricity to power nearly 70,000 homes in Utah, California and Arizona.

“This is really game-changing technology in terms of being able to develop self-sustainable energy for the U.S.,” says Moore, who also is a geologist.

The award is a Phase I grant in a three-phase DOE project known as FORGE, or Frontier Observatory for Research in Geothermal Energy. If selected for Phase III, the FORGE laboratory would be built on private land and cover about 10 acres. The laboratory would consist of two wells drilled to depths of about 8,000 feet. One well would be used to inject water into the hot rocks below. The second will recover the heated water, which is recycled.

What makes geothermal systems work? Three ingredients are necessary for a geothermal system: water, heat from the rocks (at 300 to 500 degrees Fahrenheit) and underground cracks that allow water to flow through the hot rock. Moore is confident that the granite formations beneath the site near Milford are hot enough, but the rock lacks the permeability needed to form a natural reservoir for the water to flow through.

The wells drilled at the FORGE laboratory would be used to develop ways to produce the underground fractures needed to create large, sustainable geothermal reservoirs for electric production. The researchers would create the fractures using the low-pressure injection of locally available, non-drinkable water. This water will migrate along the newly created pathways and heat up as it comes in contact with the hot granite formations.

“The experiments, testing and analyses will be conducted in an environmentally benign way,” Moore says, and they will follow DOE and Environmental Protection Agency guidelines.

The goal is to discover better ways to create underground flow that will allow communities throughout Utah and across America to construct sustainable and clean geothermal systems and power plants. According to the DOE, capturing even 2 percent of the naturally occurring thermal energy in the U.S. would provide 2,000 times more energy than we currently use.

DOE Under Secretary for Science and Energy Franklin Orr, and Douglas Hollett, the DOE’s deputy assistant secretary for renewable power, made the FORGE program announcement in Reno Monday. The EGI Phase I research team also includes scientists from the Utah Geological Survey, Idaho National Laboratory, Temple University, the U.S. Geological Survey and private contractors. The award of a $400,000 grant will kick-start the first phase. The DOE will select three teams for Phase II, and the final team for Phase III. Drilling activities at the site chosen for Phase III would begin in about two years, Moore says.

“This is important to the state of Utah, and it could potentially lower energy costs in the future, and reduce CO2 emissions,” said EGI Director and research professor Raymond Levey.

Contact Information
Vince Horiuchi, public relations associate, College of Engineering – office 801-585-7499, cell 801-556-5187, vincent.horiuchi@utah.edu

Vince Horiuchi | newswise
Further information:
http://unews.utah.edu/

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>