Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving Geothermal Energy

30.04.2015

University of Utah team chosen for geothermal research

Generating electricity from the hot rocks deep underground is clean, safe and renewable – and it’s about to take a step forward in Utah.


University of Utah College of Engineering

University of Utah research professor, Joseph Moore, is leading a team from the U's Energy & Geoscience Institute selected by the U.S. Department of Energy to study new techniques and technology for developing geothermal energy. The team, one of five selected for a new DOE project called FORGE, is proposing to build an underground geothermal laboratory near Milford in Beaver County, Utah.

The U.S. Department of Energy announced Monday that a team from the University of Utah’s Energy & Geoscience Institute is one of five research groups selected to study new techniques for developing geothermal energy in places where it’s not currently feasible. EGI is part of the U’s College of Engineering.

The U team of geologists and engineers, led by EGI research professor Joseph Moore, will evaluate establishing an underground geothermal laboratory about 10 miles north of Milford, Beaver County, within the Milford renewable energy corridor. This corridor is home to two geothermal plants and a 306-megawatt wind farm. Utah’s geothermal power plants provide enough electricity to power nearly 70,000 homes in Utah, California and Arizona.

“This is really game-changing technology in terms of being able to develop self-sustainable energy for the U.S.,” says Moore, who also is a geologist.

The award is a Phase I grant in a three-phase DOE project known as FORGE, or Frontier Observatory for Research in Geothermal Energy. If selected for Phase III, the FORGE laboratory would be built on private land and cover about 10 acres. The laboratory would consist of two wells drilled to depths of about 8,000 feet. One well would be used to inject water into the hot rocks below. The second will recover the heated water, which is recycled.

What makes geothermal systems work? Three ingredients are necessary for a geothermal system: water, heat from the rocks (at 300 to 500 degrees Fahrenheit) and underground cracks that allow water to flow through the hot rock. Moore is confident that the granite formations beneath the site near Milford are hot enough, but the rock lacks the permeability needed to form a natural reservoir for the water to flow through.

The wells drilled at the FORGE laboratory would be used to develop ways to produce the underground fractures needed to create large, sustainable geothermal reservoirs for electric production. The researchers would create the fractures using the low-pressure injection of locally available, non-drinkable water. This water will migrate along the newly created pathways and heat up as it comes in contact with the hot granite formations.

“The experiments, testing and analyses will be conducted in an environmentally benign way,” Moore says, and they will follow DOE and Environmental Protection Agency guidelines.

The goal is to discover better ways to create underground flow that will allow communities throughout Utah and across America to construct sustainable and clean geothermal systems and power plants. According to the DOE, capturing even 2 percent of the naturally occurring thermal energy in the U.S. would provide 2,000 times more energy than we currently use.

DOE Under Secretary for Science and Energy Franklin Orr, and Douglas Hollett, the DOE’s deputy assistant secretary for renewable power, made the FORGE program announcement in Reno Monday. The EGI Phase I research team also includes scientists from the Utah Geological Survey, Idaho National Laboratory, Temple University, the U.S. Geological Survey and private contractors. The award of a $400,000 grant will kick-start the first phase. The DOE will select three teams for Phase II, and the final team for Phase III. Drilling activities at the site chosen for Phase III would begin in about two years, Moore says.

“This is important to the state of Utah, and it could potentially lower energy costs in the future, and reduce CO2 emissions,” said EGI Director and research professor Raymond Levey.

Contact Information
Vince Horiuchi, public relations associate, College of Engineering – office 801-585-7499, cell 801-556-5187, vincent.horiuchi@utah.edu

Vince Horiuchi | newswise
Further information:
http://unews.utah.edu/

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>