Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New AFOSR Magnetron May Help Defeat Enemy Electronics

18.09.2009
Researchers funded by the Air Force Office of Scientific Research (AFOSR) at the University of Michigan invented a new type of magnetron that may be used to defeat enemy electronics. A magnetron is a type of vacuum tube used as the frequency source in microwave ovens, radar systems and other high-power microwave circuits.

According to Dr. Ron Gilgenbach, an AFOSR-sponsored researcher at the University of Michigan, a new class of magnetrons was invented that holds the potential for more compact Department of Defense microwave sources with faster start-up, as well as higher peak and average power.

"This invention should make it possible to develop more compact magnetrons that operate at higher power and higher frequencies," said Gilgenbach. "Higher power magnetrons could be utilized to jam and defeat enemy electronics."

The magnetron has been vital to military radar systems since World War II. Over time the basic design of the magnetron has not changed much. However, the University of Michigan researchers have revolutionized the design of both conventional and inverted magnetrons by expanding the cathode (negatively charged electrode) and anode (positively charged electrode) area into a new type of magnetron, which permits higher current and a larger area for heat dissipation in a more compact device.

This research has a significant impact on the Air Force's radar capabilities. The newly invented magnetron's higher frequencies have the potential to improve radar resolution. Additionally, the more compact packaging of the new magnetron could encourage airborne applications.

"This invention exploits some plasma physics principles that have been applied to this problem as well as an innovative, new geometry to overcome the physical limitations of conventional magnetrons," said Gilgenbach. "The vision is to explore both a high power version of the magnetron invention and a separate higher frequency (mm wave) embodiment."

AFOSR has been funding the research that led to this invention under the program direction of Dr. Robert Barker, Physics and Electronics program manager. Dr. Barker speaks highly of the University of Michigan-led team, which includes co-inventors: R.M. Gilgenbach (UM), Y.Y. Lau (UM), Brad Hoff (formerly UM, currently at AFRL), David French (UM), and John Luginsland (NumerEx).

"The Michigan group led by Profs. Gilgenbach and Lau has long been a mainstay of AFOSR's high power microwave (HPM) research team," said Barker. "Not only is it internationally recognized for its scientific accomplishments as exemplified by this new invention, but this Michigan group also serves as an example for the rest of the university community. It has established active collaborations with AFRL counterparts and provided a steady stream of graduates to staff the ranks of the Air Force's HPM research and development establishment."

ABOUT AFOSR:
The Air Force Office of Scientific Research (AFOSR), located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory (AFRL), AFOSR's mission is to discover, shape, and champion basic science that profoundly impacts the future Air Force.

Rebecca Rose | EurekAlert!
Further information:
http://www.afosr.af.mil

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>