Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

21.0% record efficiency for large area (156 × 156 mm2) n-type EWT solar cell

22.03.2012
The Institute for Solar Energy Research (ISFH) and Q-Cells SE, one of the world’s leading photovoltaic companies, present an n-type emitter-wrap-through (EWT) solar cell with a record efficiency of 21.0% on a large area wafer format of (156 × 156) mm2. The cell concept is developed in the research project “ALBA II”, which is funded by the German Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU).

At the 37th IEEE Photovoltaic Specialist Conference, which took place in Seattle in June 2011, ISFH and Q-Cells already presented small n-type EWT solar cells with an efficiency of 21.6% and an area of (20 × 20) mm2. The cell process is based on monocrystalline Czochralski n-type silicon.


The novel n-type EWT solar cell with 21% efficiency. Foto: ISFH


The high efficiency EWT solar cell.
Foto: ISFH

The boron-doped emitter is defined with laser structuring and is passivated optimally with an aluminumoxide-siliconnitride double layer. ISFH has now scaled up the solar cell production processes to large wafer formats. A novel back contact design with four busbars has been developed, which reduces the finger length to about 50 mm and makes it possible to realize on this large cell area a metalization with a solar cell resitivity contribution less than 0.5 Ohm·cm2.

The project team at ISFH with project manager Till Brendemühl and the R&D team at Q-Cells SE are particularly pleased with the performance of the best (156 × 156) mm2 area solar cell, which has an efficiency of 21.0%, a Jsc of 40.5 mA/cm2, a Voc of 667 mV, and a fill factor of 77.7%.

The solar cells have been measured with a class A sun simulator in the characterization lab at Q-Cells SE, using a measuring chuck developed at ISFH. The measurement has been corrected considering the spectral mismatch.

“This cell type still has the potential for further improvements. We are confident to reach even higher efficiencies” says physicist Fabian Kiefer, who is developing back-contacted solar cells as part of his PhD thesis.

“Our goal is to simplify the production process significantly, while keeping the efficiencies above 21.0% on large cell area” says Prof. Dr. Nils-Peter Harder, head of the group.

Dr. Roland Goslich | idw
Further information:
http://www.isfh.de/

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>