Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why global warming is taking a break

20.08.2014

The average temperature on Earth has barely risen over the past 16 years. ETH researchers have now found out why. And they believe that global warming is likely to continue again soon.

Global warming is currently taking a break: whereas global temperatures rose drastically into the late 1990s, the global average temperature has risen only slightly since 1998 – surprising, considering scientific climate models predicted considerable warming due to rising greenhouse gas emissions.


The number of sunspots (white area here) varies in multi-year cycles. As a result, solar irradiance, which influences the Earth's climate, also fluctuates. The photo shows a UV image of the sun. (Image: Trace Project / NASA)

Climate sceptics used this apparent contradiction to question climate change per se – or at least the harm potential caused by greenhouse gases – as well as the validity of the climate models. Meanwhile, the majority of climate researchers continued to emphasise that the short-term ‘warming hiatus’ could largely be explained on the basis of current scientific understanding and did not contradict longer term warming.

Researchers have been looking into the possible causes of the warming hiatus over the past few years. For the first time, Reto Knutti, Professor of Climate Physics at ETH Zurich, has systematically examined all current hypotheses together with a colleague. In a study published in the latest issue of the journal Nature Geoscience, the researchers conclude that two important factors are equally responsible for the hiatus.

El Niño warmed the Earth

One of the important reasons is natural climate fluctuations, of which the weather phenomena El Niño and La Niña in the Pacific are the most important and well known. "1998 was a strong El Niño year, which is why it was so warm that year," says Knutti. In contrast, the counter-phenomenon La Niña has made the past few years cooler than they would otherwise have been.

Although climate models generally take such fluctuations into account, it is impossible to predict the year in which these phenomena will emerge, says the climate physicist. To clarify, he uses the stock market as an analogy: "When pension funds invest the pension capital in shares, they expect to generate a profit in the long term." At the same time, they are aware that their investments are exposed to price fluctuations and that performance can also be negative in the short term. However, what finance specialists and climate scientists and their models are not able to predict is when exactly a short-term economic downturn or a La Niña year will occur.

Longer solar cycles

According to the study, the second important reason for the warming hiatus is that solar irradiance has been weaker than predicted in the past few years. This is because the identified fluctuations in the intensity of solar irradiance are unusual at present: whereas the so-called sunspot cycles each lasted eleven years in the past, for unknown reasons the last period of weak solar irradiance lasted 13 years. Furthermore, several volcanic eruptions, such as Eyjafjallajökull in Iceland in 2010, have increased the concentration of floating particles (aerosol) in the atmosphere, which has further weakened the solar irradiance arriving at the Earth's surface.

The scientists drew their conclusions from corrective calculations of climate models. In all climate simulations, they looked for periods in which the El Niño/La Niña patterns corresponded to the measured data from the years 1997 to 2012. With a combination of over 20 periods found, they were able to arrive at a realistic estimate of the influence of El Niño and La Niña. They also retroactively applied in the model calculations the actual measured values for solar activity and aerosol concentration in the Earth's atmosphere. Model calculations corrected in this way match the measured temperature data much more closely.

Incomplete measured data

The discrepancy between the climate models and measured data over the past 16 years cannot solely be attributed to the fact that these models predict too  much warming, says Knutti. The interpretation of the official measured data should also be critically scrutinised. According to Knutti, measured data is likely to be too low, since the global average temperature is only estimated using values obtained from weather stations on the ground, and these do not exist everywhere on Earth. From satellite data, for example, scientists know that the Arctic region in particular has become warmer over the past years, but because there are no weather stations in that area, there are measurements that show strong upward fluctuations. As a result, the specified average temperature is too low.

Last year, British and Canadian researchers proposed an alternative temperature curve with higher values, in which they incorporated estimated temperatures from satellite data for regions with no weather stations. If the model data is corrected downwards, as suggested by the ETH researchers, and the measurement data is corrected upwards, as suggested by the British and Canadian researchers, then the model and actual observations are very similar.

Warming to recommence

Despite the warming hiatus, Knutti is convinced there is no reason to doubt either the existing calculations for the climate activity of greenhouse gases or the latest climate models. "Short-term climate fluctuations can easily be explained. They do not alter the fact that the climate will become considerably warmer in the long term as a result of greenhouse gas emissions," says Knutti. He believes that global warming will recommence as soon as solar activity, aerosol concentrations in the atmosphere and weather phenomena such as El Niño naturally start returning to the values of previous decades.

Literature reference

Huber M, Knutti R: Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nature Geoscience, online publication 17 August 2014, doi: 10.1038/ngeo2228 

Fabio Bergamin | Eurek Alert!
Further information:
https://www.ethz.ch/en/news-and-events/eth-news/news/2014/08/why-global-warming-is-taking-a-break.html

Further reports about: ETH Warming activity atmosphere break fluctuations greenhouse phenomena temperature

More articles from Earth Sciences:

nachricht Research spotlights a previously unknown microbial 'drama' playing in the Southern Ocean
31.07.2015 | National Science Foundation

nachricht Past and present sea levels in the Chesapeake Bay Region, USA
29.07.2015 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>