Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WHOI scientist takes comprehensive look at human impacts on ocean chemistry

18.06.2010
Numerous studies are documenting the growing effects of climate change, carbon dioxide, pollution and other human-related phenomena on the world's oceans. But most of those have studied single, isolated sources of pollution and other influences.

Now, a marine geochemist at the Woods Hole Oceanographic Institution (WHOI) has published a report in the latest issue of the journal Science that evaluates the total impact of such factors on the ocean and considers what the future might hold.

"What we do on land—agriculture, fossil fuel combustion and pollution—can have a profound impact on the chemistry of the sea," says Scott C. Doney, a senior scientist at WHOI and author of the Science report. "A whole range of these factors have been studied in isolation but have not been put in a single venue."

Doney's paper represents a meticulous compilation of the work of others as well as his own research in this area, which includes ocean acidification, climate change, and the global carbon cycle.

He concludes that climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and the many forms of pollution are "altering fundamentally the…ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record."

The research documents several major trends, which include a shift in the acid-based chemistry of seawater, reduced subsurface oxygen, both in coastal waters and the open ocean, rising coastal nitrogen levels, and a widespread increase in mercury and other pollutants.

"Human impacts are not isolated to coastal waters," Doney says. They "are seen around the globe."

Moreover, he says, "many of these changes in climate and ocean chemistry can compound each other, making the problem considerably worse for marine life." For example, warming and nutrient runoff both can trigger a decline in oxygen levels off the coast, according to Doney. And acidification, he says, may exacerbate coral bleaching.

Among Doney's findings:

Global ocean pH and chemical saturation states are changing at an "unprecedented" rate, 30 to 100 times faster than temporal changes in the recent geological past, "and the perturbations will last many centuries to millennia."

"Ocean acidification will likely reduce shell and skeleton growth by many marine calcifying species, including corals and mollusks."

"Ocean acidification may also reduce the tolerance of some species to thermal stress…Polar ecosystems may be particularly susceptible…"

Fertilizer runoff and nitrogen from fossil fuels are increasing the severity and duration of coastal hypoxia, or decreased oxygen.

Doney was part of an international consortium of scientists that reported recently that carbon dioxide emissions from fossil fuels have increased by almost a third over the last decade, rendering the Earth's future uncertain unless "CO2 emissions [are] drastically reduced."

They attributed the rise to increasing production and trade of manufactured products, particularly from emerging economies, the gradual shift from oil to coal, and the planet's waning capacity to absorb CO2.

Doney led a team that developed ocean-model simulations for estimating the historical variations in air-sea CO2 fluxes. "Over the last decade, CO2 emissions have continued to climb despite efforts to control emissions," Doney said. "Preliminary evidence suggests that the land and ocean may be becoming less effective at removing CO2 from the atmosphere, which could accelerate future climate change."

In his Science paper, Doney calls for "a deeper understanding of human impacts on ocean biogeochemistry…Although some progress has been made on a nascent ocean observing system for CO2, the marine environment remains woefully undersampled for most compounds. The oceanographic community needs to develop a coordinated observational plan…"

More detailed studies are needed, in particular, to look at the responses of cells and organisms to biochemical intruders to their undersea environment. "Lastly, Doney says, "targeted research is needed on the impacts on marine resources and fisheries, potential adaptation strategies, and the consequences for human and social economic systems."

The work was funded by WHOI and the Center for Microbial Oceanography, Research and Education.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans' role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>