Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water Vapor In Stratosphere Plays Role In Climate

02.10.2013
Water vapor changes in the stratosphere contribute to warmer temperatures and likely play an important role in the evolution of Earth’s climate, says a research team led by a Texas A&M University professor.

Andrew Dessler, a Texas A&M atmospheric sciences professor, and colleagues from the University of Colorado, NOAA (National Oceanic and Atmospheric Administration) and the Science and Technology Corp. have had their findings published in the Proceedings of the National Academy of Sciences.

The researchers found that increased surface temperatures, such as from the addition of carbon dioxide to the atmosphere, leads to increased humidity in the stratosphere. Because stratospheric water vapor is a greenhouse gas, this leads to additional warming, they said. This cycle is frequently called a climate feedback.

“We find that this stratospheric water vapor feedback is probably responsible for 5-10 percent of the total warming you get from adding carbon dioxide to the climate,” Dessler explained. “While it’s not really surprising that this process is going on, we were surprised at how important the process is for our climate system.”

Climate models already include this process, but unevenly. Some models predict large increases in stratospheric humidity, while others don’t, the researchers say.

“It’s clear to us that, if models want to make accurate predictions of climate change, they should get stratospheric water vapor right,” said Sean Davis, a research scientist at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado at Boulder and study coauthor. He added, “A better understanding of the stratospheric water vapor feedback could help explain some of the spread among predictions of future climate change from different models,” referring to the projections made by the recently released 5th Assessment report of the Intergovernmental Panel on Climate Change (IPCC) last week.

Several years ago, Dessler was the first to observationally calculate the strength of the cloud feedback, showing that clouds play a key role in climate change.

The researchers used water vapor measurements from the Microwave Limb Sounder on board NASA’s Aura satellite. It also used simulations from NASA’s Goddard Earth Observing System Chemistry Climate Model. The project was funded by a grant from the National Science Foundation.

A short video explaining the feedback process can be viewed at http://bit.ly/16Ao9Nn.

About Research at Texas A&M University: As one of the world’s leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents total annual expenditures of more than $776 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu or Andrew Dessler at (979) 862-1427 or adessler@tamu.edu

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | Newswise
Further information:
http://www.tamu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>