Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Water Vapor In Stratosphere Plays Role In Climate

Water vapor changes in the stratosphere contribute to warmer temperatures and likely play an important role in the evolution of Earth’s climate, says a research team led by a Texas A&M University professor.

Andrew Dessler, a Texas A&M atmospheric sciences professor, and colleagues from the University of Colorado, NOAA (National Oceanic and Atmospheric Administration) and the Science and Technology Corp. have had their findings published in the Proceedings of the National Academy of Sciences.

The researchers found that increased surface temperatures, such as from the addition of carbon dioxide to the atmosphere, leads to increased humidity in the stratosphere. Because stratospheric water vapor is a greenhouse gas, this leads to additional warming, they said. This cycle is frequently called a climate feedback.

“We find that this stratospheric water vapor feedback is probably responsible for 5-10 percent of the total warming you get from adding carbon dioxide to the climate,” Dessler explained. “While it’s not really surprising that this process is going on, we were surprised at how important the process is for our climate system.”

Climate models already include this process, but unevenly. Some models predict large increases in stratospheric humidity, while others don’t, the researchers say.

“It’s clear to us that, if models want to make accurate predictions of climate change, they should get stratospheric water vapor right,” said Sean Davis, a research scientist at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado at Boulder and study coauthor. He added, “A better understanding of the stratospheric water vapor feedback could help explain some of the spread among predictions of future climate change from different models,” referring to the projections made by the recently released 5th Assessment report of the Intergovernmental Panel on Climate Change (IPCC) last week.

Several years ago, Dessler was the first to observationally calculate the strength of the cloud feedback, showing that clouds play a key role in climate change.

The researchers used water vapor measurements from the Microwave Limb Sounder on board NASA’s Aura satellite. It also used simulations from NASA’s Goddard Earth Observing System Chemistry Climate Model. The project was funded by a grant from the National Science Foundation.

A short video explaining the feedback process can be viewed at

About Research at Texas A&M University: As one of the world’s leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents total annual expenditures of more than $776 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or or Andrew Dessler at (979) 862-1427 or

For more news about Texas A&M University, go to

Follow us on Twitter at

Keith Randall | Newswise
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>