Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water in mantle may be associated with subduction

21.08.2009
A team of scientists from Oregon State University has created the first global three-dimensional map of electrical conductivity in the Earth's mantle and their model suggests that that enhanced conductivity in certain areas of the mantle may signal the presence of water.

What is most notable, the scientists say, is those areas of high conductivity coincide with subduction zones – where tectonic plates are being subducted beneath the Earth's crust. Subducting plates are comparatively colder than surrounding mantle materials and thus should be less conductive. The answer, the researchers suggest, may be that conductivity in those areas is enhanced by water drawn downward during the subduction process.

Results of their study are being published this week in Nature.

"Many earth scientists have thought that tectonic plates are not likely to carry much if any water deep into the Earth's mantle when they are being subducted," said Adam Schultz, a professor in the College of Oceanic and Atmospheric Sciences at Oregon State and a co-author on the Nature study. "Most evidence suggests that subducting rocks initially hold water within their minerals, but that water is released as the rocks heat up."

"There may be other explanations," he added, "but the model clearly shows a close association between subduction zones and high conductivity and the simplest explanation is water."

The study is important because it provides new insights into the fundamental ways in which the planet works. Despite all of the advances in technology, scientists are still unsure how much water lies beneath the ocean floor – and how much of it makes its way into the mantle.

The implications are myriad. Water interacts with minerals differently at different depths, and small amounts of water can change the physical properties of rocks, alter the viscosity of materials in the mantle, assist in the formation of rising plumes of melted rock and ultimately affect what comes out on the surface.

"In fact, we don't really know how much water there is on Earth," said Gary Egbert, also a professor of oceanography at OSU and co-author on the study. "There is some evidence that there is many times more water below the ocean floor than there is in all the oceans of the world combined. Our results may shed some light on this question."

Egbert cautioned that there are other explanations for higher conductivity in the mantle, including elevated iron content or carbon.

There also may be different explanations for how the water – if indeed the conductivity is reflecting water – got there in the first place, the scientists point out.

"If it isn't being subducted down with the plates," Schultz said, "how did it get there? Is it primordial, down there for four billion years? Or did it indeed come down as the plates slowly subduct, suggesting that the planet may have been much wetter a long time ago? These are fascinating questions, for which we do not yet have answers."

The scientists conducted their study using electromagnetic induction sounding of the Earth's mantle. This electromagnetic imaging method is very sensitive to interconnecting pockets of fluid that may be found within rocks and minerals that enhance conductivity. Using magnetic observations from more than 100 observatories dating back to the 1980s, they were able to create a global three-dimensional map of mantle conductivity.

Anna Kelbert, a post-doctoral research associate at OSU and lead author on the paper, said the imaging doesn't show the water itself, but the level of conductivity and interpreting levels of hydrogen, iron or carbon require additional constraints from mineral physics. She described the study of electrical conductivity as both computationally intensive and requiring years of careful measurements in the international observatories.

"The deeper you want to look into the mantle," Kelbert said, "the longer periods you have to use. This study has required magnetic field recordings collected over decades."

The scientists say the next step is to replicate the experiment with newly available data from both ground observatories and satellites, and then conduct more research to better understand the water cycle and how the interaction with deep-Earth minerals works. Their work is supported by the National Science Foundation and NASA to take the next steps in this research program.

Ultimately, they hope to produce a model quantifying how much water may be in the mantle, locked up within the mineral-bearing rocks.

Adam Schultz | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>