Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Alaska Fairbanks researchers eye Sikuliaq science possibilities

19.05.2011
Sam VanLaningham can't wait to take the Sikuliaq for a spin.

When it's ready for science operations in 2014, the 261-foot research vessel will be capable of drilling Bering Strait seafloor cores in any season. VanLaningham hopes those cores will uncover mysteries about the history of climate change in Alaska.

Last week, VanLaningham and several UAF scientists met with other researchers and agency representatives at the first Sikuliaq Science Workshop at Marinette Marine Corporation in Marinette, Wis. At the workshop, scientists presented and discussed some of the many scientific projects possible on the R/V Sikuliaq. The scientists also toured full-scale mock-ups of the vessel's laboratories and bridge.

VanLaningham, an assistant professor of geological oceanography and an expert in paleoceanography, is particularly interested in using the Sikuliaq to collect sediment cores for his studies of how sea level changes at the Bering Strait have affected past climate in the northern hemisphere.

"We will be able to use the ship, winter or summer, to core in the Bering Strait to extract the geologic history of change at Bering Strait, and thus address its role on global climate through time," said VanLaningham.

VanLaningham says he and other geological oceanographers are particularly excited by the large back deck of the vessel, which will allow them to collect of sediment cores up to 70 feet long.

Terry Whitledge, professor of chemical oceanography and the principal investigator for the Sikuliaq project, says the ship will be able to take scientists to areas they have never been before. He also says that the ship will be the most capable in the United States academic fleet.

"With an ice-capable ship making its home in Alaska, we are situated better than ever to address arctic questions that have global implications," added VanLaningham.

Whitledge says that the Sikuliaq Science Workshop was infused with enthusiasm about the ship's many capabilities and that UAF scientists at the workshop said that they "can't wait for the big splash"—when the ship is launched into the Great Lakes Waterway in June 2012.

In addition to many other projects, Whitledge hopes to use the ship to explore the biology and geology of four different submarine canyons in Alaska waters: one in the Arctic, two in the Bering Sea and one in the Aleutians. Whitledge says the Sikuliaq's advanced mapping capabilities could help determine where remotely operated vehicles and submersibles could be launched to explore these deep canyons.

Other UAF scientists at the workshop, including Mark Johnson, Peter Winsor, Tom Weingartner, Dean Stockwell and Seth Danielson, discussed using the ship for other projects, including surveying sea ice thickness, looking at freshwater flow into the Bering Sea from the Yukon and Kuskokwim Rivers and mapping currents in the Gulf of Alaska.

The R/V Sikuliaq, pronounced [see-KOO-lee-auk], will be an oceanographic research ship capable of bringing scientists from around the world to the icy waters of Alaska and the polar regions. The ship's homeport will be at UAF's Seward Marine Center.

The Sikuliaq project, with more than $200 million in funding from the National Science Foundation, is the largest funded project ever managed by UAF.

The first proposals to include ship time for the Sikuliaq will be submitted in August and October of this year. The next Sikuliaq Science Workshop will take place in February 2012 in conjunction with the American Geophysical Union's Ocean Sciences Meeting in Salt Lake City, Utah.

The vessel will be owned by NSF and operated by UAF. The ship will be ready for unrestricted science operations in 2014.

Carin Stephens | EurekAlert!
Further information:
http://www.alaska.edu

Further reports about: Marine science Marinette Science TV UAF VanLaningham polar region sea snails sediment cores

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>