Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Scientists Lead Effort to Evaluate Unprecedented Environmental Flow to Colorado Delta

25.03.2014

University of Arizona scientists Karl Flessa and Ed Glenn and a binational team of scientists will monitor the effects of an engineered spring flood to bring water to the parched Colorado River delta.

The pulse flow of water into the dry lower reaches of the Colorado River began Sunday. 

“This allocation of environmental water to the Colorado River Delta in Mexico is unprecedented,” said Flessa, UA professor of geosciences and co-chief scientist of the monitoring effort. “We need to learn how to actively manage habitats at this scale. The scientific monitoring of the pulse flow and its aftermath will help us do so.” 

Upstream dams and water diversions for farms and cities in both countries have dried up most of the river south of the border. With the exception of a few wet years, the river has not reached the Gulf of California since 1960.

... more about:
»Arizona »Colorado »Delta »Environmental »Flow »Pronatura »spring

The U.S. and Mexico will release about 105,000 acre-feet of water, approximately 0.7 percent of the river’s annual flow, into the delta below Morelos Dam, which straddles the U.S.-Mexico border just west of Yuma. An acre-foot of water is 325,900 gallons.

“We’re trying to simulate a spring flood, even though the amount of water is small compared to the natural spring floods of the era before the dams, when the river regularly flowed over its banks and formed extensive wetlands and forests of cottonwoods,” Flessa said.

This engineered spring flood is one outcome of Minute 319, a 2012 addition to the 1944 U.S.-Mexico Water Treaty. 

The agreement is a framework for cooperation that provides multiple benefits for Colorado River water users in both countries, including environmental flows to the delta. Minute 319 identifies criteria for sharing of future water shortages and surpluses between the two countries, allows storage of Mexican water in Lake Mead and funds improvements to Mexican irrigation infrastructure.

The five-year program to monitor the environmental results of the pulse flow is being supported by government agencies and environmental groups in both countries, under the auspices of the International Boundary and Water Commission.

The monitoring team includes scientists from the UA, the Universidad Autónoma de Baja California, the U.S. Geological Survey, the U.S. Bureau of Reclamation, The Nature Conservancy, the Tucson-based Sonoran Institute and the Ensenada-based Pronatura Noroeste.

“The pulse flow is a vital part of our ongoing restoration efforts. We know that relatively small amounts of water can make a big difference in the health of the delta region,” said Francisco Zamora Arroyo, director of the Colorado River Delta Legacy Program at the Sonoran Institute.

Ed Glenn, UA professor emeritus of soil, water and environmental science, is leading the vegetation and remote-sensing teams. The pulse flow is designed to stimulate the growth of the delta’s natural vegetation by dispersing native seeds and fostering their growth by raising the water table in the vicinity of the river’s now-dry channel. 

New growth will create the habitats that support wildlife. Close to 380 bird species are expected to benefit from this return of water to the delta, said  UA alumnus Osvel Hinojosa, the water and wetlands program director at Pronatura Noroeste.

“We’re all energized by such big science that could have such a big outcome for restoration on the delta and in dryland rivers elsewhere," Flessa said. "Ed Glenn and I have been working on the delta for more than 20 years and this is a dream come true. People told us this would never happen – and here it is.”

The UA and its partners in the Colorado River Minute 319 Binational Partnership received a U.S. Department of Interior 2013 Partners in Conservation Award in January. Glenn accepted the award on behalf of the UA. 

# # #

Media Contact 

Mari N. Jensen

520-626-9635

mnjensen@email.arizona.edu

Researcher Contact

Karl Flessa

520-444-5383

kflessa@email.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

Further reports about: Arizona Colorado Delta Environmental Flow Pronatura spring

More articles from Earth Sciences:

nachricht Underground fungi detected from space
04.05.2016 | Smithsonian Tropical Research Institute

nachricht How much does groundwater contribute to sea level rise?
03.05.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>