Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Scientists Lead Effort to Evaluate Unprecedented Environmental Flow to Colorado Delta

25.03.2014

University of Arizona scientists Karl Flessa and Ed Glenn and a binational team of scientists will monitor the effects of an engineered spring flood to bring water to the parched Colorado River delta.

The pulse flow of water into the dry lower reaches of the Colorado River began Sunday. 

“This allocation of environmental water to the Colorado River Delta in Mexico is unprecedented,” said Flessa, UA professor of geosciences and co-chief scientist of the monitoring effort. “We need to learn how to actively manage habitats at this scale. The scientific monitoring of the pulse flow and its aftermath will help us do so.” 

Upstream dams and water diversions for farms and cities in both countries have dried up most of the river south of the border. With the exception of a few wet years, the river has not reached the Gulf of California since 1960.

... more about:
»Arizona »Colorado »Delta »Environmental »Flow »Pronatura »spring

The U.S. and Mexico will release about 105,000 acre-feet of water, approximately 0.7 percent of the river’s annual flow, into the delta below Morelos Dam, which straddles the U.S.-Mexico border just west of Yuma. An acre-foot of water is 325,900 gallons.

“We’re trying to simulate a spring flood, even though the amount of water is small compared to the natural spring floods of the era before the dams, when the river regularly flowed over its banks and formed extensive wetlands and forests of cottonwoods,” Flessa said.

This engineered spring flood is one outcome of Minute 319, a 2012 addition to the 1944 U.S.-Mexico Water Treaty. 

The agreement is a framework for cooperation that provides multiple benefits for Colorado River water users in both countries, including environmental flows to the delta. Minute 319 identifies criteria for sharing of future water shortages and surpluses between the two countries, allows storage of Mexican water in Lake Mead and funds improvements to Mexican irrigation infrastructure.

The five-year program to monitor the environmental results of the pulse flow is being supported by government agencies and environmental groups in both countries, under the auspices of the International Boundary and Water Commission.

The monitoring team includes scientists from the UA, the Universidad Autónoma de Baja California, the U.S. Geological Survey, the U.S. Bureau of Reclamation, The Nature Conservancy, the Tucson-based Sonoran Institute and the Ensenada-based Pronatura Noroeste.

“The pulse flow is a vital part of our ongoing restoration efforts. We know that relatively small amounts of water can make a big difference in the health of the delta region,” said Francisco Zamora Arroyo, director of the Colorado River Delta Legacy Program at the Sonoran Institute.

Ed Glenn, UA professor emeritus of soil, water and environmental science, is leading the vegetation and remote-sensing teams. The pulse flow is designed to stimulate the growth of the delta’s natural vegetation by dispersing native seeds and fostering their growth by raising the water table in the vicinity of the river’s now-dry channel. 

New growth will create the habitats that support wildlife. Close to 380 bird species are expected to benefit from this return of water to the delta, said  UA alumnus Osvel Hinojosa, the water and wetlands program director at Pronatura Noroeste.

“We’re all energized by such big science that could have such a big outcome for restoration on the delta and in dryland rivers elsewhere," Flessa said. "Ed Glenn and I have been working on the delta for more than 20 years and this is a dream come true. People told us this would never happen – and here it is.”

The UA and its partners in the Colorado River Minute 319 Binational Partnership received a U.S. Department of Interior 2013 Partners in Conservation Award in January. Glenn accepted the award on behalf of the UA. 

# # #

Media Contact 

Mari N. Jensen

520-626-9635

mnjensen@email.arizona.edu

Researcher Contact

Karl Flessa

520-444-5383

kflessa@email.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

Further reports about: Arizona Colorado Delta Environmental Flow Pronatura spring

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>