Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UA Scientists Lead Effort to Evaluate Unprecedented Environmental Flow to Colorado Delta


University of Arizona scientists Karl Flessa and Ed Glenn and a binational team of scientists will monitor the effects of an engineered spring flood to bring water to the parched Colorado River delta.

The pulse flow of water into the dry lower reaches of the Colorado River began Sunday. 

“This allocation of environmental water to the Colorado River Delta in Mexico is unprecedented,” said Flessa, UA professor of geosciences and co-chief scientist of the monitoring effort. “We need to learn how to actively manage habitats at this scale. The scientific monitoring of the pulse flow and its aftermath will help us do so.” 

Upstream dams and water diversions for farms and cities in both countries have dried up most of the river south of the border. With the exception of a few wet years, the river has not reached the Gulf of California since 1960.

... more about:
»Arizona »Colorado »Delta »Environmental »Flow »Pronatura »spring

The U.S. and Mexico will release about 105,000 acre-feet of water, approximately 0.7 percent of the river’s annual flow, into the delta below Morelos Dam, which straddles the U.S.-Mexico border just west of Yuma. An acre-foot of water is 325,900 gallons.

“We’re trying to simulate a spring flood, even though the amount of water is small compared to the natural spring floods of the era before the dams, when the river regularly flowed over its banks and formed extensive wetlands and forests of cottonwoods,” Flessa said.

This engineered spring flood is one outcome of Minute 319, a 2012 addition to the 1944 U.S.-Mexico Water Treaty. 

The agreement is a framework for cooperation that provides multiple benefits for Colorado River water users in both countries, including environmental flows to the delta. Minute 319 identifies criteria for sharing of future water shortages and surpluses between the two countries, allows storage of Mexican water in Lake Mead and funds improvements to Mexican irrigation infrastructure.

The five-year program to monitor the environmental results of the pulse flow is being supported by government agencies and environmental groups in both countries, under the auspices of the International Boundary and Water Commission.

The monitoring team includes scientists from the UA, the Universidad Autónoma de Baja California, the U.S. Geological Survey, the U.S. Bureau of Reclamation, The Nature Conservancy, the Tucson-based Sonoran Institute and the Ensenada-based Pronatura Noroeste.

“The pulse flow is a vital part of our ongoing restoration efforts. We know that relatively small amounts of water can make a big difference in the health of the delta region,” said Francisco Zamora Arroyo, director of the Colorado River Delta Legacy Program at the Sonoran Institute.

Ed Glenn, UA professor emeritus of soil, water and environmental science, is leading the vegetation and remote-sensing teams. The pulse flow is designed to stimulate the growth of the delta’s natural vegetation by dispersing native seeds and fostering their growth by raising the water table in the vicinity of the river’s now-dry channel. 

New growth will create the habitats that support wildlife. Close to 380 bird species are expected to benefit from this return of water to the delta, said  UA alumnus Osvel Hinojosa, the water and wetlands program director at Pronatura Noroeste.

“We’re all energized by such big science that could have such a big outcome for restoration on the delta and in dryland rivers elsewhere," Flessa said. "Ed Glenn and I have been working on the delta for more than 20 years and this is a dream come true. People told us this would never happen – and here it is.”

The UA and its partners in the Colorado River Minute 319 Binational Partnership received a U.S. Department of Interior 2013 Partners in Conservation Award in January. Glenn accepted the award on behalf of the UA. 

# # #

Media Contact 

Mari N. Jensen


Researcher Contact

Karl Flessa


Daniel Stolte | University of Arizona
Further information:

Further reports about: Arizona Colorado Delta Environmental Flow Pronatura spring

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>