Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are tropical forests resilient to global warming?

11.03.2013
Tropical forests are less likely to lose biomass – plants and plant material - in response to greenhouse gas emissions over the twenty-first century than may previously have been thought, suggests a study published online this week in Nature Geoscience.

In the most comprehensive assessment yet of the risk of tropical forest dieback due to climate change, the results have important implications for the future evolution of tropical rainforests including the role they play in the global climate system and carbon cycle.

To remain effective, programmes such as the United Nation's Reducing Emissions from Deforestation and Degradation+ scheme require rainforest stability, in effect locking carbon within the trees.

The research team comprised climate scientists and tropical ecologists from the UK, USA, Australia and Brazil and was led by Dr Chris Huntingford from the Centre for Ecology & Hydrology in the UK.

Dr Huntingford and colleagues used computer simulations with 22 climate models to explore the response of tropical forests in the Americas, Africa and Asia to greenhouse-gas-induced climate change. They found loss of forest cover in only one model, and only in the Americas. The researchers found that the largest source of uncertainty in the projections to be differences in how plant physiological processes are represented, ahead of the choice of emission scenario and differences between various climate projections.

Although this work suggests that the risk of climate-induced damage to tropical forests will be relatively small, the paper does list where the considerable uncertainties remain in defining how ecosystems respond to global warming.

Lead author Dr Chris Huntingford, from the Centre for Ecology & Hydrology in the UK, said, "The big surprise in our analysis is that uncertainties in ecological models of the rainforest are significantly larger than uncertainties from differences in climate projections. Despite this we conclude that based on current knowledge of expected climate change and ecological response, there is evidence of forest resilience for the Americas (Amazonia and Central America), Africa and Asia."

Co-author Dr David Galbraith from the University of Leeds said, "This study highlights why we must improve our understanding of how tropical forests respond to increasing temperature and drought. Different vegetation models currently simulate remarkable variability in forest sensitivity to climate change. And while these new results suggest that tropical forests may be quite resilient to warming, it is important also to remember that other factors not included in this study, such as fire and deforestation, will also affect the carbon stored in tropical forests. Their impacts are also difficult to simulate. It is therefore critical that modelling studies are accompanied by further comprehensive forest observations."

Co-author Dr Lina Mercado from the University of Exeter and the Centre for Ecology & Hydrology said, "Building on this study, one of the big challenges that remains is to include, in Earth system models, a full representation of thermal acclimation and adaptation of the rainforest to warming."

The research team came from the Centre for Ecology & Hydrology (UK), National Center for Atmospheric Research (USA), The Australian National University (Australia), CCST/Inst Nacl Pesquisas Espaciais (INPE) (Brazil), James Cook University (Australia), University of Leeds (UK), University of Oxford (UK), University of Exeter (UK), University of Sheffield (UK), Met Office Hadley Centre (UK), University College London (UK), and the University of Edinburgh, (UK).

Editors notes

To obtain a copy of the paper in advance of publication please contact the Nature press office. Email: press@nature.com

Further information:

Lead author, Dr Chris Huntingford (Centre for Ecology & Hydrology, UK)
Mobile: +44 (0) 7884 437138; Email: chg@ceh.ac.uk
Dr Barnaby Smith (Media Relations Manager, Centre for Ecology & Hydrology, UK)
Mobile: +44 (0) 7920 295384; Email: bpgs@ceh.ac.uk
This research was supported by the Centre for Ecology & Hydrology, the UK NERC QUEST, TROBIT and AMAZONICA (NE/F005806/1) initiatives, the Moore Foundation, the Natural Environment Research Council, ARC-Australia, joint DECC and Defra Met Office Hadley Centre Climate Programme funding, the Brazilian Research Council, the Sao Paulo State Research Foundation, the European Research Council and the Royal Society.

Reference: Chris Huntingford, Przemyslaw Zelazowski, David Galbraith, Lina M. Mercado, Stephen Sitch, Rosie Fisher, Mark Lomas, Anthony P.Walker, Chris D. Jones, Ben B. B. Booth, Yadvinder Malhi, Debbie Hemming, Gillian Kay, Peter Good, Simon L. Lewis, Oliver L. Phillips, Owen K. Atkin, Jon Lloyd, Emanuel Gloor, Joana Zaragoza-Castells, Patrick Meir, Richard Betts, Phil P. Harris, Carlos Nobre, Jose Marengo and Peter M. Cox 'Simulated resilience of tropical rainforests to CO2-induced climate change' will be published in Nature Geoscience on 10 March 2013. http://www.nature.com/naturegeoscience. The DOI for this paper will be 10.1038/NGEO1741

The Centre for Ecology & Hydrology (CEH) is the UK's Centre of Excellence for integrated research in the land and freshwater ecosystems and their interaction with the atmosphere. CEH is part of the Natural Environment Research Council, employs more than 450 people at four major sites in England, Scotland and Wales, hosts over 150 PhD students, and has an overall budget of about £35m. CEH tackles complex environmental challenges to deliver practicable solutions so that future generations can benefit from a rich and healthy environment. http://www.ceh.ac.uk You can follow the latest developments in CEH research via twitter and our rss news feed

NERC is the UK's main agency for funding and managing world-class research, training and knowledge exchange in the environmental sciences. It coordinates some of the world's most exciting research projects, tackling major issues such as climate change, food security, environmental influences on human health, the genetic make-up of life on earth, and much more. NERC receives around £300m a year from the government's science budget, which it uses to fund research and training in universities and its own research centres. http://www.nerc.ac.uk

Dr. Barnaby Smith | EurekAlert!
Further information:
http://www.ceh.ac.uk

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>