Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool clears the air on cloud simulations

27.10.2011
Climate models have a hard time representing clouds accurately because they lack the spatial resolution necessary to accurately simulate the billowy air masses.

But Livermore scientists and international collaborators have developed a new tool that will help scientists better represent the clouds observed in the sky in climate models.

Traditionally, observations from satellites infer the properties of clouds from the radiation field (reflection of sunlight back into space, or thermal emission of the planet). However, to accurately utilize satellite data in climate model assessment, a tool is required that allows an apples-to-apples comparison between the clouds simulated in a climate model and the cloud properties retrieved from satellites.

"The models are becoming more interactive and are taking into account the radiation data from the satellite observations and is an important part of the process of making better climate models," said the Lab's Stephen Klein, who along with LLNL's Yuying Zhang and other collaborators have developed the Cloud-Feedback-Model Intercomparison Project Observation Simulator Package (COSP).

"The models have been improving and refining their representations of clouds and COSP will play an important role in furthering this improvement," Klein said.

Climate models struggle to represent clouds accurately because the models lack the spatial resolution to fully represent clouds. Global climate models typically have a 100-kilometer resolution while meteorological models have a 20-kilometer range. However, to accurately represent clouds as seen in satellite measurements, the scale would need to be from the 500-meter resolution to 1-kilometer range.

"But those small scales are not practical for weather or global climate models," Klein said. "Our tool will better connect with what the satellites observe - how many clouds, their levels and their reflectivity."

The COSP is now used worldwide by most of the major models for climate and weather prediction, and it will play an important role in the evaluation of models that will be reviewed by the next report of the Intergovernmental Panel on Climate Change, Klein said.

The COSP allows for a meaningful comparison between model-simulated clouds and corresponding satellite observations. In other words, what would a satellite see if the atmosphere had the clouds of a climate model?

"COSP is an important and necessary development because modeled clouds cannot be directly compared with observational data; the model representation of clouds is not directly equivalent to what satellites are able to see," Klein explained. "The COSP eliminates significant ambiguities in the direct comparison of model simulations with satellite retrievals."

COSP includes a down-scaler that allows for large-scale climate models to estimate the clouds at the satellite-scale. The tool also allows modelers to diagnose how well models are able to simulate clouds as well as how climate change alters clouds. The tool already has revealed climate model limitations such as too many optically thick clouds, too few mid-level clouds and an overestimate of the frequency of precipitation. Additionally, COSP has shown that climate change leads to an increase in optical thickness and increases the altitude of high clouds and decreases the amount of low and mid-level clouds.

Other collaborators include: the UK's Hadley Centre, Université Pierre et Marie Curie; University of Washington; Monash University, University of Colorado; and the National Oceanic and Atmospheric Administration/Earth System Research Laboratory.

More information about the COSP appears in the August issue of the Bulletin of the American Meteorological Society.

More Information
"COSP: Satellite simulation software for model assessment," Bulletin of the American Meteorological Society

"Increase in atmospheric moisture tied to human activities," LLNL news release, Sept. 18, 2007

"Identification of Human-Induced Changes in Atmospheric Moisture Content," Proceedings of the National Academy of Sciences, Sept. 25, 2007

LLNL's Program for Climate Model Diagnosis and Intercomparison

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>