Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study explains connection between Hawaii's dueling volcanoes

24.10.2012
Scientists propose upper-mantle link between Kilauea and Mauna Loa

A new Rice University-led study finds that a deep connection about 50 miles underground can explain the enigmatic behavior of two of Earth's most notable volcanoes, Hawaii's Mauna Loa and Kilauea.


A plume of magmatic gases rises from a vent that formed in 2008 within Halema'uma'u Crater, which is located within Kilauea's summit caldera.

Credit: CREDIT: M. Poland/USGS HVO

The study, the first to model paired volcano interactions, explains how a link in Earth's upper mantle could account for Kilauea and Mauna Loa's competition for the same deep magma supply and their simultaneous "inflation," or bulging upward, during the past decade.

The study appears in the November issue of Nature Geoscience.

The research offers the first plausible model that can explain both the opposing long-term eruptive patterns at Mauna Loa and Kilauea -- when one is active the other is quiet -- as well as the episode in 2003-2007 when GPS records showed that each bulged notably due to the pressure of rising magma. The study was conducted by scientists at Rice University, the University of Hawaii, the U.S. Geological Survey (USGS) and the Carnegie Institution of Washington.

"We know both volcanoes are fed by the same hot spot, and over the past decade we've observed simultaneous inflation, which we interpret to be the consequence of increased pressure of the magma source that feeds them," said lead author Helge Gonnermann, assistant professor of Earth science at Rice University. "We also know there are subtle chemical differences in the lava that each erupts, which means each has its own plumbing that draws magma from different locations of this deep source.

"In the GPS records, we first see inflation at Kilauea and then about a half a year later at Mauna Loa," he said. "Our hypothesis is that the pressure is transmitted slowly through a partially molten and thereby porous region of the asthenosphere, which would account for the simultaneous inflation and the lag time in inflation. Because changes in pore pressure are transmitted between both volcanoes at a faster rate than the rate of magma flow within the porous region, this can also explain how both volcanoes are dynamically coupled, while being supplied by different parts of the same source region."

Gonnermann said the transmission of pressure through the permeable rock in the asthenosphere is akin to the processes that cause water and oil to flow through permeable layers of rock in shallower regions of Earth's crust.

"When we fitted the deformation, which tells us how much a volcano inflates and deflates, and the lava eruption rate at Kilauea, we found that our model could simultaneously match the deformation signal recorded over on Mauna Loa," said James Foster, co-author and assistant researcher at the University of Hawaii School of Ocean and Earth Science and Technology. "The model also required an increase in the magma supply rate to the deep system that matched very nicely with our interpretations and the increased magma supply suggested by the jump in CO2 emissions that occurred in late 2003."

Mauna Loa and Kilauea, Earth's largest and most active volcanoes, respectively, are located about 22 miles apart in the Hawaii Volcanoes National Park on the island of Hawaii. They are among the planet's most-studied and best-instrumented volcanoes and have been actively monitored by scientists at USGS's Hawaiian Volcano Observatory (HVO) since 1912. Kilauea has erupted 48 times on HVO's watch, with a nearly continuous flank eruption since 1983. Mauna Loa has erupted 12 times in the same period, most recently in 1984.

"To continue this research, we submitted a proposal to the National Science Foundation (NSF) earlier this summer to extend our study back in time to cover the last 50 years," Foster said. "We plan to refine the model to include further details of the magma transport within each volcano and also explore how some known prehistoric events and some hypothetical events at one volcano might impact the other. This work should help improve our understanding of volcanic activity of each volcano."

Gonnermann said there has been disagreement among Earth scientists about the potential links between adjacent volcanoes, and he is hopeful the new model could be useful in studying other volcanoes like those in Iceland or the Galapagos Islands.

"At this point it is unclear whether Hawaii is unique or whether similar volcano coupling may exist at other locations," Gonnermann said. "Given time and ongoing advances in volcano monitoring, we can test if similar coupling between adjacent volcanoes exists elsewhere."

Study co-authors include Michael Poland and Asta Miklius, both of HVO; Benjamin Brooks of the University of Hawaii; and Cecily Wolfe of the University of Hawaii and the Carnegie Institution of Washington.

The research was supported by the USGS and the NSF. The Kilauea and Mauna Loa GPS networks are supported by grants from the USGS, NSF and NASA and operated in collaboration by the USGS, Stanford University and the Pacific GPS Facility at the University of Hawaii.

The following images are available for download at:

http://news.rice.edu/wp-content/uploads/2012/10/1025_HAWAII_plume-med.jpg
CAPTION: A plume of magmatic gases rises from a vent that formed in 2008 within Halema'uma'u Crater, which is located within Kilauea's summit caldera.

CREDIT: M. Poland/USGS HVO

http://news.rice.edu/wp-content/uploads/2012/10/1025_HAWAII_dark-med.jpg
CUTLINE: A glowing plume of hot magmatic gases rises from a vent that formed in 2008 within Halema'uma'u Crater, which is located within Kilauea's summit caldera.

CREDIT: M. Poland/USGS HVO

http://news.rice.edu/wp-content/uploads/2012/10/1025_HAWAII_ERZ2-lg.jpg
CUTLINE: Lava flows from Pu'u 'O'o Crater on Kilauea.
CREDIT: USGS
A copy of the Nature Geoscience paper is available at:
http://dx.doi.org/10.1038/ngeo1612.
This release can be found online at news.rice.edu.
Follow Rice News and Media Relations via Twitter @RiceUNews

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>