Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study may explain extreme algae growth in streams where they should starve

03.06.2011
A species of freshwater algae that lives in streams and rivers is able to colonize and dominate the bottoms of some of the world's cleanest waterways --precisely because they are so clear, according to a new study.

The alga, called Didymo for Didymosphenia geminata, does so with a little help from its friends -- in this case, bacteria-- which allow it to make use of nutrients like phosphorus.

Blooms of Didymo, also known as "rock snot," are made up of stalks that form thick mats on the beds of oligotrophic (low-nutrient) streams and rivers, says scientist P.V. Sundareshwar of the South Dakota School of Mines and Technology in Rapid City. Sundareshwar is the lead author of the paper, published on 28 May in Geophysical Research Letters, a journal of the American Geophysical Union.

"In recent decades, human activities have led to many uncommon environmental phenomena," he says. "Now we have Didymo."

The freshwater diatom has become notorious. Didymo has taken over oligotrophic rivers in North America and Europe. It has also invaded water bodies in the Southern Hemisphere, including those in New Zealand and Chile.

Because its blooms alter food webs and have the potential to impact fisheries, "Didymo presents a threat to the ecosystem and economic health of these watercourses," says Sundareshwar.

Algae blooms are usually linked with the input of nutrients that fuel the growth of microscopic aquatic plants. Didymo's ability to grow prolifically in waters where nutrients such as phosphorus are in short supply had puzzled scientists.

Environmental managers had tried to mitigate Didymo blooms and predict their spread. But how the diatoms sustained such high growth in oligotrophic systems was unknown.

In the study, Sundareshwar and colleagues revealed that Didymo is able to concentrate phosphorus from the water.

The scientists conducted their research in Rapid Creek, an unpolluted mountain stream in western South Dakota where Didymo was first observed in 2002. The creek regularly has Didymo blooms, with 30 to 100 percent of the streambed covered with Didymo over an area up to ten kilometers (6.2 miles) long.

Didymo thrives in Rapid Creek through biogeochemical processes in biofilms in the mats. As Didymo mats develop, new stalks develop at the surface and older stalks-which have already bound phosphorus-are displaced to the mats' inner regions.

Phosphorus is available to Didymo thanks to the activity of the bacteria that live inside these mats.

"This study solves the puzzle of how Didymo can produce such large blooms in low-nutrient rivers and streams," says Tim Kratz, program director in the National Science Foundation's (NSF) Division of Environmental Biology.

"It has uncovered the fascinating mechanism by which Didymo 'scrubs' phosphorus from a stream or river," says Kratz, "then creates a microenvironment that allows microbes to make this nutrient available for Didymo's growth."

The concentration of phosphorus on Didymo mats far exceeds the level that was expected based on the nutrient content of surface waters, says Sundareshwar. "The ability of the mats to store phosphorus is in turn tied to the availability of iron in the water."

Didymo cells adsorb (collect on their surfaces) both iron and phosphorus. Then bacterial processes in the mat interact with iron to increase the biological availability of phosphorus.

The process results in abundant phosphorus for cell division, "and hence," says Sundareshwar, "a resolution to the paradox of Didymo blooms in oliogotrophic streams and rivers."

The result may help managers identify water bodies susceptible to Didymo blooms, and develop management strategies.

"It also has the potential to lead to discoveries that may stem this organism's prolific growth in rivers around in the world," says Sundareshwar.

This study was funded by NSF and the State of South Dakota Carbon Scientist fund.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper by Sundareshwar et al. by clicking on this link:

http://dx.doi.org/10.1029/2010GL046599

Or, you may order a copy of the paper by emailing your request to Maria-Jose Vinas at mjvinas@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither this paper nor this press release are under embargo.

Title:
"Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers"
Authors:
P. V. Sundareshwar, S. Upadhayay, M. Abessa, S. Honomichl, C. Sandvik, and A. Trennepohl:

Institute of Atmospheric Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA;

B. Berdanier: Deparment of Civil and Environmental Engineering, South Dakota State University, Brookings, South Dakota, USA;

S. A. Spaulding: INSTAAR, U.S. Geological Survey, Boulder, Colorado, USA.

Contact information for the author:
P. V. Sundareshwar: pvs@sdsmt.edu, +1 (605) 394-2492

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>