Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study closes in on geologic history of Earth's deep interior

17.06.2009
UC Davis team calculates distribution of iron isotopes in Earth's mantle 4.5 billion years ago, opening door to new studies of planet's geologic history

By using a super-computer to virtually squeeze and heat iron-bearing minerals under conditions that would have existed when the Earth crystallized from an ocean of magma to its solid form 4.5 billion years ago, two UC Davis geochemists have produced the first picture of how different isotopes of iron were initially distributed in the solid Earth.

The discovery could usher in a wave of investigations into the evolution of Earth's mantle, a layer of material about 1,800 miles deep that extends from just beneath the planet's thin crust to its metallic core.

"Now that we have some idea of how these isotopes of iron were originally distributed on Earth," said study senior author James Rustad, a Chancellor's fellow and professor of geology, "we should be able to use the isotopes to trace the inner workings of Earth's engine."

A paper describing the study by Rustad and co-author Qing-zhu Yin, an associate professor of geology, was posted online by the journal Nature Geoscience on Sunday, June 14, in advance of print publication in July.

Sandwiched between Earth's crust and core, the vast mantle accounts for about 85 percent of the planet's volume. On a human time scale, this immense portion of our orb appears to be solid. But over millions of years, heat from the molten core and the mantle's own radioactive decay cause it to slowly churn, like thick soup over a low flame. This circulation is the driving force behind the surface motion of tectonic plates, which builds mountains and causes earthquakes.

One source of information providing insight into the physics of this viscous mass are the four stable forms, or isotopes, of iron that can be found in rocks that have risen to Earth's surface at mid-ocean ridges where seafloor spreading is occurring, and at hotspots like Hawaii's volcanoes that poke up through the Earth's crust. Geologists suspect that some of this material originates at the boundary between the mantle and the core some 1,800 miles beneath the surface.

"Geologists use isotopes to track physico-chemical processes in nature the way biologists use DNA to track the evolution of life," Yin said.

Because the composition of iron isotopes in rocks will vary depending on the pressure and temperature conditions under which a rock was created, Yin said, in principle, geologists could use iron isotopes in rocks collected at hot spots around the world to track the mantle's geologic history. But in order to do so, they would first need to know how the isotopes were originally distributed in Earth's primordial magma ocean when it cooled down and hardened.

As a team, Yin and Rustad were the ideal partners to solve this riddle. Yin and his laboratory are leaders in the field of using advanced mass spectrometric analytical techniques to produce accurate measurements of the subtle variations in isotopic composition of minerals. Rustad is renowned for his expertise in using large computer clusters to run high-level quantum mechanical calculations to determine the properties of minerals.

The challenge the pair faced was to determine how the competing effects of extreme pressure and temperature deep in Earth's interior would have affected the minerals in the lower mantle, the zone that stretches from about 400 miles beneath the planet's crust to the core-mantle boundary. Temperatures up to 4,500 degrees Kelvin in the region reduce the isotopic differences between minerals to a miniscule level, while crushing pressures tend to alter the basic form of the iron atom itself, a phenomenon known as electronic spin transition.

Using Rustad's powerful 144-processor computer, the two calculated the iron isotope composition of two minerals under a range of temperatures, pressures and different electronic spin states that are now known to occur in the lower mantle. The two minerals, ferroperovskite and ferropericlase, contain virtually all of the iron that occurs in this deep portion of the Earth.

These calculations were so complex that each series Rustad and Yin ran through the computer required a month to complete.

In the end, the calculations showed that extreme pressures would have concentrated iron's heavier isotopes near the bottom of the crystallizing mantle.

It will be a eureka moment when these theoretical predictions are verified one day in geological samples that have been generated from the lower mantle, Yin said. But the logical next step for him and Rustad to take, he said, is to document the variation of iron isotopes in pure chemicals subjected to temperatures and pressures in the laboratory that are equivalent to those found at the core-mantle boundary. This can be achieved using lasers and a tool called a diamond anvil.

"Much more fun work lies ahead," he said. "And that's exciting."

The work was supported by the U.S. Department of Energy's Office of Basic Energy Sciences, and by a NASA Cosmochemistry grant and a NASA Origins of Solar Systems grant.

An abstract of the paper "Iron isotope fractionation in the Earth's lower mantle" can be found at http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo546.html.

For 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science — and advanced degrees from six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Liese Greensfelder | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>