Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southern Ocean iron cycle gives new insight into climate change

17.03.2014

An international team of researchers analysed the available data taken from all previous studies of the Southern Ocean, together with satellite images taken of the area, to quantify the amount of iron supplied to the surface waters of the Southern Ocean.

They found that deep winter mixing, a seasonal process which carries colder and deeper, nutrient-rich water to the surface, plays the most important role in transporting iron to the surface. The iron is then able to stimulate phytoplankton growth which supports the ocean's carbon cycle and the aquatic food chain

They were also able to determine that following the winter iron surge, a recycling process is necessary to support biological activity during the spring and summer seasons.

Oceanographer, Dr Alessandro Tagliabue, from the University's School of Environmental Sciences, said: "We combined all available iron data, matched them with physical data from autonomous profiling floats and used the latest satellite estimates of biological iron demand to explore how iron is supplied to the phytoplankton in the Southern Ocean.

... more about:
»Antarctic »CO2 »Ocean »Tasmania »activity »mixing »processes »unique »winds

"This is important because iron limits biological productivity and air to sea CO2 exchange in this region. We found unique aspects to the iron cycle and how it is supplied by physical processes, making it distinct to other nutrients.

"This means that the Southern Ocean's nutrient supply would be affected by changes to the climate system (such as winds and freshwater input) differently to other areas of the ocean.

"We need to understand these unique aspects so that they can be used to better inform global climate predictions."

Dr Jean-Baptiste Sallée, from the Centre National de la Recherche Scientifique and the British Antarctic Survey, said: “We are really excited to make this discovery because until now we didn’t know the physical processes allowing iron to reach the ocean surface and maintain biological activity. The combination of strong winds and intense heat loss in winter strongly mixes the ocean surface and the mixing reaches deep iron reservoir.”

The Southern Ocean comprises the southernmost waters of the world oceans that encircle Antarctica. Researchers have long known the region is crucial in the uptake of atmospheric CO2 and that biological processes in the Southern Ocean influence the global ocean system via northward flowing currents.

###

The research involved the British Antarctic Survey, Southern Ocean Carbon and Climate Observatory, Sorbonne Universites, CNRS, University of Tasmania, University of Cape Town, University of Otago, University of Tasmania.

It is published in Nature Geoscience.

Sarah Stamper | EurekAlert!
Further information:
http://www.liv.ac.uk

Further reports about: Antarctic CO2 Ocean Tasmania activity mixing processes unique winds

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>