Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the Mysteries of Short-Legged Neandertals

20.10.2011
While most studies have concluded that a cold climate led to the short lower legs typical of Neandertals, researchers at Johns Hopkins have found that lower leg lengths shorter than the typical modern human’s let them move more efficiently over the mountainous terrain where they lived. The findings reveal a broader trend relating shorter lower leg length to mountainous environments that may help explain the limb proportions of many different animals.

Their research was published online in the American Journal of Physical Anthropology and will appear in print in the November issue.

“Studies looking at limb length have always concluded that a shorter limb, including in Neandertals, leads to less efficiency of movement, because they had to take more steps to go a given distance,” says lead author Ryan Higgins, graduate student in the Johns Hopkins Center of Functional Anatomy and Evolution. “But the other studies only looked at flat land. Our study suggests that the Neandertals’ steps were not less efficient than modern humans in the sloped, mountainous environment where they lived.”

Neandertals, who lived from 40,000 to 200,000 years ago in Europe and Western Asia, mostly during very cold periods, had a smaller stature and shorter lower leg lengths than modern humans. Because mammals in cold areas tend to be more compact, with a smaller surface area, scientists have normally concluded that it was the region’s temperature that led to their truncated limbs compared to those of modern humans, who lived in a warmer environment overall.

However, Higgins’ group adds a twist to this story. Using a mathematical model relating leg proportions to angle of ascent on hills, he has calculated that Neandertals on a sloped terrain would have held an advantage while moving compared to their long-legged cousins, the modern humans. Because the area Neandertals inhabited was more mountainous than where modern humans tended to live, the researchers say that this assessment paints a more accurate picture of the Neandertals’ efficiency of movement as compared to humans. “Their short lower leg lengths actually made the Neandertals more adept at walking on hills,” explains Higgins.

But the group didn’t stop there. “In our field, if you want to prove an adaptation to the environment, like mountains leading to shorter leg lengths, you can’t just look at one species; you have to look at many species in the same situation, and see the same pattern happening over and over again,” says Higgins. “We needed to look at other animals with similar leg construction that existed in both flat and mountainous areas, as Neandertals and humans did, to see if animals tended to have shorter lower leg length in the mountains.”

The researchers decided to study different types of bovids--a group of mammals including gazelles, antelopes, goats and sheep--since these animals live in warm and cold environments on both flat and hilly terrain. The group took data from the literature on bovid leg bones and found that they fit the pattern: mountainous bovids, such as sheep and mountain goats, overall had shorter lower leg bones than their relatives on flat land, such as antelopes and gazelles, even when they lived in the same climates.

Investigating closely related bovids brought this trend into even sharper relief. Most gazelles live on flat land, and the one mountainous gazelle species examined had relatively shorter lower legs, despite sharing the same climate. Also, among caprids (goats and sheep), which mostly live on mountains, the one flat land member of the group exhibited relatively longer lower legs than all the others.

“Biologists have Bergman’s and Allen’s Rules, which predict reduced surface area to body size and shorter limbs in colder environments,” says Higgins. “Our evidence suggests that we can also predict certain limb configurations based on topography. We believe adding the topic of terrain to ongoing discussions about limb proportions will allows us to better refine our understanding of how living species adapt to their environments. This improved understanding will help us better interpret the characteristics of many fossil species, not just Neandertals.”

Funding for this research was provided by the Johns Hopkins Center of Functional Anatomy and Evolution.

This study was completed by Ryan Higgins and Christopher B. Ruff, Ph.D., also of the Johns Hopkins Center of Functional Anatomy and Evolution.

On the Web:

Center for Functional Anatomy and Evolution: http://www.hopkinsmedicine.org/fae/

Ryan Higgins: http://www.hopkinsmedicine.org/fae/RWH.htm

Christopher Ruff: http://www.hopkinsmedicine.org/fae/CBR.htm

American Journal of Physical Anthropology: http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291096-8644

Sarah Lewin | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>