Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snail shells show high-rise plateau is much lower than it used to be

23.09.2014

The Tibetan Plateau in south-central Asia, because of its size, elevation and impact on climate, is one of the world’s greatest geological oddities.

At about 960,000 square miles it covers slightly more land area than Alaska, Texas and California combined, and its elevation is on the same scale as Mount Rainier in the Cascade Range of Washington state. Because it rises so high into the atmosphere, it helps bring monsoons over India and other nations to the south while the plateau itself remains generally arid.


Joel Saylor

The Zhada Basin on the southwest Tibetan Plateau, with the Himalayas to the south.

For decades, geologists have debated when and how the plateau reached such lofty heights, some 14,000 feet above sea level, about half the elevation of the highest Himalayan peaks just south of the plateau.

But new research led by a University of Washington scientist appears to confirm an earlier improbable finding – at least one large area in southwest Tibet, the plateau’s Zhada Basin, actually lost 3,000 to 5,000 feet of elevation sometime in the Pliocene epoch.

“This basin is really high right now but we think it was a kilometer or more higher just 3 million to 4 million years ago,” said Katharine Huntington, a UW associate professor of Earth and space sciences and the lead author of a paper describing the research.

Co-authors are Joel Saylor of the University of Houston and Jay Quade and Adam Hudson, both of the University of Arizona. The paper was published online in August and will appear in a future print edition of the Geological Society of America Bulletin.

The Zhada Basin has rugged terrain, with exposed deposits of ancient lake and river sediments that make fossil shells of gastropods such as snails easily accessible, and determining their age is relatively straightforward. The researchers studied shells dating from millions of years ago and from a variety of aquatic environments. They also collected modern shell and water samples from a variety of environments for comparison.

The work confirms results of a previous study involving Saylor and Quade that examined the ratio of heavy isotope oxygen-18 to light isotope oxygen-16 in ancient snail shells from the Zhada Basin. They found the ratios were very low, which suggested the basin had a higher elevation in the past.

Oxygen-18 levels decrease in precipitation at higher elevations in comparison with oxygen-16, so shells formed in lakes and rivers that collect precipitation at higher elevations should have a lower heavy-to-light oxygen ratio. However, those lower ratios depend on a number of other factors, including temperature, evaporation and precipitation source, which made it difficult to say with certainty whether the low ratios found in the ancient snail shells meant a loss of elevation in the Zhada Basin.

So the scientists also employed a technique called clumped isotope thermometry, which Huntington has used and worked to refine for several years, to determine the temperature of shell growth and get an independent estimate of elevation change in the basin.

Bonding, or “clumping” together, of heavy carbon-13 and oxygen-18 isotopes in the carbonate of snail shells happens more readily at colder temperatures, and is measured using a tool called a mass spectrometer that provides data on the temperature of the lake or river water in which the snails lived.

The scientists found markedly greater “clumping,” as well as lower ratios of oxygen-18 to oxygen-16 in the ancient shells, indicating the shells formed at temperatures as much as 11 degrees Celsius (20 F) colder than average temperatures today, the equivalent of as much as 5,000 feet of elevation loss.

Just why the elevation decline happened is open to speculation. One possibility is that as faults in the region spread, the Zhada Basin lowered, Huntington said. It is unknown yet whether other parts of the southern plateau also lowered at the same time, but if elevation loss was widespread it could be because of broader fault spreading.

It also is possible the crust thickened and forced large rock formations even deeper into the Earth, where they heated until they reached a consistency at which they could ooze out from beneath the crust, like toothpaste squeezed from the tube.

She noted that climate records from deep-sea fossils indicate Earth was significantly warmer when the cold Zhada Basin snail shells were formed.

“Our findings are a conservative estimate,” Huntington said. “No one can say this result is due to a colder climate, because if anything it should have been warmer.”

Funding was provided in part by the National Science Foundation, the American Chemical Society Petroleum Research Fund, the Comer Foundation and the Natural Science Foundation of China.

###

For more information, contact Huntington at 206-543-1750 or kate1@uw.edu, or Saylor at 713-743-3399 or jesaylor@uh.edu.

Vince Stricherz | Eurek Alert!
Further information:
http://www.washington.edu/news/2014/09/22/snail-shells-show-high-rise-plateau-is-much-lower-than-it-used-to-be/

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>