Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating Volcano Eruptions, One Blast at a Time

16.08.2012
A voice carried across the treeless plateau: "Fire in the hole! The range is now active."

Two dozen people fell silent before a muffled blast sent a geyser-like shower of crushed gravel, limestone and asphalt roughly 50 feet in the air. Moments later, standing at the blast site, University at Buffalo geology professor Greg Valentine gave an impromptu assessment.

"That was great. It was exactly what we expected," said Valentine, PhD, director of UB's Center for Geohazards Studies.

The experiment, a rare large-scale attempt to simulate volcanic eruptions, is drawing international attention because it will provide much-needed insight into one of Earth's most powerful and mysterious natural disasters. If that wasn't enough, it may help mining companies find diamonds.

A short video of the experimental blast is available here: http://www.youtube.com/watch?v=VeN7R_H5N8w.

When most people think of volcanoes, images of exploding mountain tops come to mind. There is another type of volcano, however, called a maar. They feature large craters, often topped by a pool of water, near mountain ranges. Maars range from a few hundred feet to more than a mile across.

The UB-funded experiment, which took place on land owned by Cheektowaga-based Calspan Corp., focused on maars. It unfolded over several days in July. The idea, according to Valentine, was not to determine how or when eruptions will occur, but rather to figure out what happens during and after an eruption.

Do subsequent eruptions cause the crater to expand? Will the volcano spew enough ash to affect air travel, as did the 2010 volcanic eruption in Iceland?

To help answer those questions, Valentine and researchers built three test beds, each 12-feet-by-12-feet square, and packed them with gravel, limestone and asphalt, 3 to 3-1/2 feet deep. Explosives roughly as powerful as a grenade were placed in post holes and detonated.

Because volcanic eruptions are naturally occurring, each with their own distinct features, it isn't possible to exactly replicate one, Valentine said. But the test beds are an accurate barometer to base conclusions on because researchers can control the strength of the blast, he said.

The experiment drew the attention of Jacopo Taddeucci, PhD, a volcanologist at the National Institute of Geophysics and Volcanology in Rome, Italy. He flew into Buffalo for the occasion to use high-speed cameras to record the explosions.

"Large-scale experiments like this are quite rare," he said in between blasts.

It also piqued the interest of Manoranjan Majii, PhD, an assistant professor of mechanical and aerospace engineering at UB. Majii used the experiment to test software he developed that provides near instantaneous 3-D imagery of Earth's surface, including craters.

While it's too early to draw conclusions, the experiment could provide insight into the location of diamonds. The valuable gemstone is brought close to Earth's surface by the funnel-shaped mass of magma and broken rock that form under volcanoes, Valentine said.

He will spend the next few months analyzing results of the experiment before reporting his findings in a yet-to-be determined academic journal. For the time being though, Valentine said he is happy with the results.

"I've learned more today, without analyzing this entirely, as I would if I spent an entire year reading technical papers."

Cory Nealon | Newswise Science News
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>