Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea Spray Aerosols May Affect Ice Cloud Formation and Global Climate

10.09.2015

The finding by Stony Brook researchers and international colleagues published in Nature

Scientists believe that the thin film on the ocean’s surface, which is involved in the formation of sea spray, holds many mysteries that impact our atmosphere and world. A team of Stony Brook University and international researchers may have discovered one key role of this thin layer. They found that biogenic materials in the layer may affect ice cloud formation and thus climate on a global scale, particularly when other known ice forming particles such as mineral dust are scarce or absent. Their findings are detailed in a paper published in Nature.


Stony Brook University

Ice formation initiated by sea spray aerosol particles as observed using the Knopf ice nucleation apparatus coupled to optical microscopy. The ice crystals grow (panels left to right) as relative humidity is increased.

Sea spray aerosol, containing salt and various organic compounds produced by phytoplankton and other microorganisms in surface ocean waters, is emitted by the bursting of bubbles formed by breaking waves and is one of the major sources of particles in the atmosphere. The research groups of Daniel A. Knopf, PhD, in the Institute for Terrestrial and Planetary Atmospheres in Stony Brook’s School of Marine and Atmospheric Sciences (SoMAS), and Josephine Aller, PhD, of SoMAS, are working to unravel the complicated relationship between microorganisms in ocean surface waters, organic compounds in sea spray, and ice cloud formation, which in turn affects precipitation and climate.

“How natural aerosol particles affect the radiative properties of clouds is poorly understood and is one of the largest uncertainties in the prediction of future climate changes,” said Professor Knopf. “But our international collaborative brought together the scientific expertise to show that the sea surface microlayer contains ice nucleating organic material released by phytoplankton.”

In the paper, “A marine biogenic source of atmospheric ice-nucleating particles,” the research team studied the source of marine ice nucleating particles through the use of field instruments during several oceanic cruises, laboratory ice nucleation measurements, and state-of-the-art synchrotron X-ray single particle analysis, using facilities at the Lawrence Berkeley National Laboratory’s Advanced Light Source.

Professors Knopf and Aller with their students showed that dissolved organic material released by a common ocean phytoplankton species grown in the laboratory could form ice under temperatures and relative humidity typical of the atmosphere. The Stony Brook team further demonstrated that field collected surface ocean microlayer film material capable of ice nucleation is physicochemically similar to the organic material released by the laboratory culture.

These findings, in combination with ice nucleation experiments using the Arctic microlayer samples, led the international team to conclude that biogenic ice nucleating particles present in material released by phytoplankton are a good candidate for the source of activity observed in the sampled microlayers. It is known that sea spray aerosol is often associated with phytoplankton material. This suggests that some fraction of sea spray aerosol particles will be capable of forming ice in the atmosphere.

Armed with these data, the international team developed a global model incorporating sea spray aerosol emissions and ice formation efficiencies measured in the laboratory to unambiguously link phytoplankton with particles that form ice in the atmosphere.

“The application of this model to assess the transport of marine ice nucleating particles to cold atmospheric regions allowed us to infer that marine ice nucleating particles can be compared to dust sources in large parts of the Southern Ocean, the North Atlantic and the North Pacific,” explained Professor Knopf. “This leads us to conclude that oceans are potentially a major source of naturally occurring ice forming particles in the atmosphere.”

International research team members involved in the study come from 11 universities or institutions in the United States, Canada and Europe.

The research is supported in part by the National Science Foundation and the U.S. Department of Energy.

Contact Information
Gregory Filiano
Manager of Media Relations, School of Medicine
Gregory.Filiano@stonybrook.edu
Phone: 631-444-9343

http://www.stonybrook.edu

Gregory Filiano | newswise

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>